Clinical Deidentification Pipeline (Langtest - English)

Description

This pipeline can be used to deidentify PHI information from medical texts. The PHI information will be masked and obfuscated in the resulting text. The pipeline can mask and obfuscate LOCATION, CONTACT, PROFESSION, NAME, DATE, ID, AGE, MEDICALRECORD, ORGANIZATION, HEALTHPLAN, DOCTOR, USERNAME, LOCATION-OTHER, URL, DEVICE, CITY, ZIP, STATE, PATIENT, COUNTRY, STREET, PHONE, HOSPITAL, EMAIL, IDNUM, BIOID, FAX, SSN, ACCOUNT, DLN, PLATE, VIN, LICENSE entities. This pre-trained pipeline is built with NER models powered by langtest library.

Predicted Entities

LOCATION, CONTACT, PROFESSION, NAME, DATE, ID, AGE, MEDICALRECORD, ORGANIZATION, HEALTHPLAN, DOCTOR, USERNAME, LOCATION-OTHER, URL, DEVICE, CITY, ZIP, STATE, PATIENT, COUNTRY, STREET, PHONE, HOSPITAL, EMAIL, IDNUM, BIOID, FAX, SSN, ACCOUNT, DLN, PLATE, VIN, LICENSE

Copy S3 URI

How to use

from sparknlp.pretrained import PretrainedPipeline

deid_pipeline = PretrainedPipeline("clinical_deidentification_langtest", "en", "clinical/models")

text = """Name : Hendrickson, Ora, Record date: 2093-01-13, MR #719435.
Dr. John Green, ID: 1231511863, IP 203.120.223.13.
He is a 60-year-old male was admitted to the Day Hospital for cystectomy on 01/13/93.
Patient's VIN : 1HGBH41JXMN109286, SSN #333-44-6666, Driver's license no: A334455B.
Phone (302) 786-5227, 0295 Keats Street, New York City, E-MAIL: smith@gmail.com."""

result = deid_pipeline.annotate(text)



import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline

val deid_pipeline = PretrainedPipeline("clinical_deidentification_langtest", "en", "clinical/models")

val text = """Name : Hendrickson, Ora, Record date: 2093-01-13, MR #719435.
Dr. John Green, ID: 1231511863, IP 203.120.223.13.
He is a 60-year-old male was admitted to the Day Hospital for cystectomy on 01/13/93.
Patient's VIN : 1HGBH41JXMN109286, SSN #333-44-6666, Driver's license no: A334455B.
Phone (302) 786-5227, 0295 Keats Street, New York City, E-MAIL: smith@gmail.com."""

val result = deid_pipeline.annotate(text)

Results


print("\nMasked with entity labels")
print("-"*30)
print("\n".join(result['masked']))
print("\nMasked with chars")
print("-"*30)
print("\n".join(result['masked_with_chars']))
print("\nMasked with fixed length chars")
print("-"*30)
print("\n".join(result['masked_fixed_length_chars']))
print("\nObfuscated")
print("-"*30)
print("\n".join(result['obfuscated']))

Masked with entity labels
------------------------------
Name : <PATIENT>, Record date: <DATE>, MR <MEDICALRECORD>.
Dr. <DOCTOR>, ID: <IDNUM>, IP <IPADDR>.
He is a <AGE>-year-old male was admitted to the <HOSPITAL> for cystectomy on <DATE>.
Patient's VIN : <VIN>, SSN <SSN>, Driver's license no: <DLN>.
Phone <PHONE>, <STREET>, <CITY>, E-MAIL: <EMAIL>.

Masked with chars
------------------------------
Name : [**************], Record date: [********], MR [*****].
Dr. [********], ID: [********], IP [************].
He is a **-year-old male was admitted to the [**********] for cystectomy on [******].
Patient's VIN : [***************], SSN [**********], Driver's license no: [******].
Phone [************], [***************], [***********], E-MAIL: [*************].

Masked with fixed length chars
------------------------------
Name : ****, Record date: ****, MR ****.
Dr. ****, ID: ****, IP ****.
He is a ****-year-old male was admitted to the **** for cystectomy on ****.
Patient's VIN : ****, SSN ****, Driver's license no: ****.
Phone ****, ****, ****, E-MAIL: ****.

Obfuscated
------------------------------
Name : Paulene Floor, Record date: 2093-03-11, MR #858850.
Dr. Valorie Roosevelt, ID: 2774128786, IP 444.444.444.444.
He is a 73-year-old male was admitted to the SUTTER MEMORIAL HOSPITAL for cystectomy on 03/11/93.
Patient's VIN : 7EHMC94BSJG283662, SSN #947-65-4650, Driver's license no: P546568L.
Phone (275) 170-0174, 1011 14Th Avenue Nw, Voorhees, E-MAIL: Seamus@hotmail.com.

Model Information

Model Name: clinical_deidentification_langtest
Type: pipeline
Compatibility: Healthcare NLP 5.2.0+
License: Licensed
Edition: Official
Language: en
Size: 1.7 GB

Included Models

  • DocumentAssembler
  • SentenceDetectorDLModel
  • TokenizerModel
  • WordEmbeddingsModel
  • MedicalNerModel
  • NerConverter
  • MedicalNerModel
  • NerConverter
  • ChunkMergeModel
  • ContextualParserModel
  • ContextualParserModel
  • ContextualParserModel
  • ContextualParserModel
  • ContextualParserModel
  • ContextualParserModel
  • TextMatcherModel
  • ContextualParserModel
  • RegexMatcherModel
  • ContextualParserModel
  • ContextualParserModel
  • ContextualParserModel
  • ContextualParserModel
  • ChunkMergeModel
  • ChunkMergeModel
  • DeIdentificationModel
  • DeIdentificationModel
  • DeIdentificationModel
  • DeIdentificationModel
  • Finisher