Clinical Deidentification Pipeline (English)

Description

This pipeline can be used to deidentify PHI information from medical texts. The PHI information will be masked and obfuscated in the resulting text. The pipeline can mask and obfuscate AGE, CONTACT, DATE, LOCATION, NAME, PROFESSION, CITY, COUNTRY, DOCTOR, HOSPITAL, IDNUM, MEDICALRECORD, ORGANIZATION, PATIENT, PHONE, STREET, USERNAME, ZIP, ACCOUNT, LICENSE, VIN, SSN, DLN, PLATE, IPADDR entities.

Predicted Entities

ACCOUNT, AGE, BIOID, CITY, CONTACT, COUNTRY, DATE, DEVICE, DLN, DOCTOR, EMAIL, FAX, HEALTHPLAN, HOSPITAL, ID, IDNUM, LICENSE, LOCATION, LOCATION-OTHER, MEDICALRECORD, NAME, ORGANIZATION, PATIENT, PHONE, PLATE, PROFESSION, SSN, STATE, STREET, URL, USERNAME, VIN, ZIP

Copy S3 URI

How to use


from sparknlp.pretrained import PretrainedPipeline

deid_pipeline = PretrainedPipeline("clinical_deidentification", "en", "clinical/models")

text = """Name : Hendrickson, Ora, Record date: 2093-01-13, MR #719435.
Dr. John Green, ID: 1231511863, IP 203.120.223.13.
He is a 60-year-old male was admitted to the Day Hospital for cystectomy on 01/13/93.
Patient's VIN : 1HGBH41JXMN109286, SSN #333-44-6666, Driver's license no: A334455B.
Phone (302) 786-5227, 0295 Keats Street, San Francisco, E-MAIL: smith@gmail.com."""

result = deid_pipeline.annotate(text)


import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline

val deid_pipeline = PretrainedPipeline("clinical_deidentification", "en", "clinical/models")

val text = """Name : Hendrickson, Ora, Record date: 2093-01-13, MR #719435.
Dr. John Green, ID: 1231511863, IP 203.120.223.13.
He is a 60-year-old male was admitted to the Day Hospital for cystectomy on 01/13/93.
Patient's VIN : 1HGBH41JXMN109286, SSN #333-44-6666, Driver's license no: A334455B.
Phone (302) 786-5227, 0295 Keats Street, San Francisco, E-MAIL: smith@gmail.com."""

val result = deid_pipeline.annotate(text)

Results


print("\nMasked with entity labels")
print("-"*30)
print("\n".join(result['masked']))
print("\nMasked with chars")
print("-"*30)
print("\n".join(result['masked_with_chars']))
print("\nMasked with fixed length chars")
print("-"*30)
print("\n".join(result['masked_fixed_length_chars']))
print("\nObfuscated")
print("-"*30)
print("\n".join(result['obfuscated']))

Masked with entity labels
------------------------------
Name : <PATIENT>, Record date: <DATE>, MR <MEDICALRECORD>.
Dr. <DOCTOR>, ID<IDNUM>, IP <IPADDR>.
He is a <AGE>-year-old male was admitted to the <LOCATION> for cystectomy on <DATE>.
Patient's VIN : <VIN>, SSN <SSN>, Driver's license no: <DLN>.
Phone <PHONE>, <STREET>, <CITY>, E-MAIL: <EMAIL>.

Masked with chars
------------------------------
Name : [**************], Record date: [********], MR [*****].
Dr. [********], ID[**********], IP [************].
He is a **-year-old male was admitted to the [**********] for cystectomy on [******].
Patient's VIN : [***************], SSN [**********], Driver's license no: [******].
Phone [************], [***************], [***********], E-MAIL: [*************].

Masked with fixed length chars
------------------------------
Name : ****, Record date: ****, MR ****.
Dr. ****, ID****, IP ****.
He is a ****-year-old male was admitted to the **** for cystectomy on ****.
Patient's VIN : ****, SSN ****, Driver's license no: ****.
Phone ****, ****, ****, E-MAIL: ****.

Obfuscated
------------------------------
Name : Beatrice Lecher, Record date: 2093-01-24, MR #194174.
Dr. Margarette Canada, ID: 0814481856, IP 001.001.001.001.
He is a 77-year-old male was admitted to the South Megan for cystectomy on 01/24/93.
Patient's VIN : 3JSHF02OVZC588502, SSN #774-12-8786, Driver's license no: V672094B.
Phone (096) 283-6629, Timothyborough, Ocala, E-MAIL: Lemuel@yahoo.com.

Model Information

Model Name: clinical_deidentification
Type: pipeline
Compatibility: Healthcare NLP 5.2.0+
License: Licensed
Edition: Official
Language: en
Size: 1.7 GB

Included Models

  • DocumentAssembler
  • SentenceDetectorDLModel
  • TokenizerModel
  • WordEmbeddingsModel
  • MedicalNerModel
  • NerConverter
  • MedicalNerModel
  • NerConverter
  • ChunkMergeModel
  • ContextualParserModel
  • ContextualParserModel
  • ContextualParserModel
  • ContextualParserModel
  • ContextualParserModel
  • ContextualParserModel
  • TextMatcherModel
  • ContextualParserModel
  • RegexMatcherModel
  • ContextualParserModel
  • ContextualParserModel
  • ContextualParserModel
  • ContextualParserModel
  • ChunkMergeModel
  • ChunkMergeModel
  • DeIdentificationModel
  • DeIdentificationModel
  • DeIdentificationModel
  • DeIdentificationModel
  • Finisher