Legal NER for MAPA(Multilingual Anonymisation for Public Administrations)

Description

The dataset consists of 12 documents taken from EUR-Lex, a multilingual corpus of court decisions and legal dispositions in the 24 official languages of the European Union.

This model extracts ADDRESS, AMOUNT, DATE, ORGANISATION, and PERSON entities from Portuguese documents.

Predicted Entities

ADDRESS, AMOUNT, DATE, ORGANISATION, PERSON

Download Copy S3 URI

How to use

document_assembler = nlp.DocumentAssembler()\
        .setInputCol("text")\
        .setOutputCol("document")

sentence_detector = nlp.SentenceDetectorDLModel.pretrained("sentence_detector_dl", "xx")\
        .setInputCols(["document"])\
        .setOutputCol("sentence")

tokenizer = nlp.Tokenizer()\
        .setInputCols(["sentence"])\
        .setOutputCol("token")

embeddings = nlp.BertEmbeddings.pretrained("bert_embeddings_base_pt_cased", "pt")\
        .setInputCols(["sentence", "token"])\
        .setOutputCol("embeddings")\
        .setMaxSentenceLength(512)\
        .setCaseSensitive(True)

ner_model = legal.NerModel.pretrained("legner_mapa", "pt", "legal/models")\
        .setInputCols(["sentence", "token", "embeddings"])\
        .setOutputCol("ner")

ner_converter = nlp.NerConverter()\
        .setInputCols(["sentence", "token", "ner"])\
        .setOutputCol("ner_chunk")

nlpPipeline = nlp.Pipeline(stages=[
        document_assembler,
        sentence_detector,
        tokenizer,
        embeddings,
        ner_model,
        ner_converter])

empty_data = spark.createDataFrame([[""]]).toDF("text")

model = nlpPipeline.fit(empty_data)

text = ["""Nos termos dos Decretos da Garda Síochána (6), só pode ser admitido como estagiário para integrar a força policial nacional quem tiver pelo menos 18 anos, mas menos de 35 anos de idade, no primeiro dia do mês em que tenha sido publicado pela primeira vez, num jornal nacional, o anúncio da vaga a que o recrutamento respeita."""]

result = model.transform(spark.createDataFrame([text]).toDF("text"))

Results

+-----------------------+------------+
|chunk                  |ner_label   |
+-----------------------+------------+
|Garda Síochána         |ORGANISATION|
|força policial nacional|ORGANISATION|
|18 anos                |AMOUNT      |
|35 anos                |AMOUNT      |
+-----------------------+------------+

Model Information

Model Name: legner_mapa
Compatibility: Legal NLP 1.0.0+
License: Licensed
Edition: Official
Input Labels: [sentence, token, embeddings]
Output Labels: [ner]
Language: pt
Size: 1.4 MB

References

The dataset is available here.

Benchmarking

label         precision  recall  f1-score  support 
ADDRESS       0.91       0.91    0.91      23      
AMOUNT        1.00       0.83    0.91      6       
DATE          1.00       0.95    0.97      61      
ORGANISATION  0.85       0.77    0.81      30      
PERSON        0.88       0.91    0.89      65      
macro-avg     0.92       0.90    0.91      185     
macro-avg     0.93       0.87    0.90      185     
weighted-avg  0.92       0.90    0.91      185