Description
The dataset consists of 12 documents taken from EUR-Lex, a multilingual corpus of court decisions and legal dispositions in the 24 official languages of the European Union.
This model extracts ADDRESS, DATE, ORGANISATION, and PERSON entities from Dutch documents.
Predicted Entities
ADDRESS, DATE, ORGANISATION, PERSON
How to use
document_assembler = nlp.DocumentAssembler()\
.setInputCol("text")\
.setOutputCol("document")
sentence_detector = nlp.SentenceDetectorDLModel.pretrained("sentence_detector_dl", "xx")\
.setInputCols(["document"])\
.setOutputCol("sentence")
tokenizer = nlp.Tokenizer()\
.setInputCols(["sentence"])\
.setOutputCol("token")
embeddings = nlp.BertEmbeddings.pretrained("bert_embeddings_base_nl_cased", "nl")\
.setInputCols(["sentence", "token"])\
.setOutputCol("embeddings")\
.setMaxSentenceLength(512)\
.setCaseSensitive(True)
ner_model = legal.NerModel.pretrained("legner_mapa", "nl", "legal/models")\
.setInputCols(["sentence", "token", "embeddings"])\
.setOutputCol("ner")
ner_converter = nlp.NerConverter()\
.setInputCols(["sentence", "token", "ner"])\
.setOutputCol("ner_chunk")
nlpPipeline = nlp.Pipeline(stages=[
document_assembler,
sentence_detector,
tokenizer,
embeddings,
ner_model,
ner_converter])
empty_data = spark.createDataFrame([[""]]).toDF("text")
model = nlpPipeline.fit(empty_data)
text = ["""Liberato en Grigorescu zijn op 22 oktober 2005 in Rome ( Italië ) in het huwelijk getreden en hebben tot de geboorte van hun kind op 20 februari 2006 in die lidstaat samengewoond."""]
result = model.transform(spark.createDataFrame([text]).toDF("text"))
Results
+----------------+---------+
|chunk |ner_label|
+----------------+---------+
|Liberato |PERSON |
|Grigorescu |PERSON |
|22 oktober 2005 |DATE |
|Rome ( Italië ) |ADDRESS |
|20 februari 2006|DATE |
+----------------+---------+
Model Information
| Model Name: | legner_mapa |
| Compatibility: | Legal NLP 1.0.0+ |
| License: | Licensed |
| Edition: | Official |
| Input Labels: | [sentence, token, embeddings] |
| Output Labels: | [ner] |
| Language: | nl |
| Size: | 1.4 MB |
References
The dataset is available here.
Benchmarking
label precision recall f1-score support
ADDRESS 0.87 0.81 0.84 16
DATE 0.98 0.98 0.98 54
ORGANISATION 0.83 0.97 0.90 31
PERSON 0.90 0.92 0.91 39
macro-avg 0.91 0.94 0.93 140
macro-avg 0.90 0.92 0.91 140
weighted-avg 0.91 0.94 0.93 140