Description
The dataset consists of 12 documents taken from EUR-Lex, a multilingual corpus of court decisions and legal dispositions in the 24 official languages of the European Union.
This model extracts ADDRESS
, AMOUNT
, DATE
, ORGANISATION
, and PERSON
entities from Lithuanian
documents.
Predicted Entities
ADDRESS
, AMOUNT
, DATE
, ORGANISATION
, PERSON
How to use
document_assembler = nlp.DocumentAssembler()\
.setInputCol("text")\
.setOutputCol("document")
sentence_detector = nlp.SentenceDetectorDLModel.pretrained("sentence_detector_dl", "xx")\
.setInputCols(["document"])\
.setOutputCol("sentence")
tokenizer = nlp.Tokenizer()\
.setInputCols(["sentence"])\
.setOutputCol("token")
embeddings = nlp.BertEmbeddings.pretrained("bert_embeddings_base_lt_cased", "lt")\
.setInputCols(["sentence", "token"])\
.setOutputCol("embeddings")\
.setMaxSentenceLength(512)\
.setCaseSensitive(True)
ner_model = legal.NerModel.pretrained("legner_mapa", "lt", "legal/models")\
.setInputCols(["sentence", "token", "embeddings"])\
.setOutputCol("ner")
ner_converter = nlp.NerConverter()\
.setInputCols(["sentence", "token", "ner"])\
.setOutputCol("ner_chunk")
nlpPipeline = nlp.Pipeline(stages=[
document_assembler,
sentence_detector,
tokenizer,
embeddings,
ner_model,
ner_converter])
empty_data = spark.createDataFrame([[""]]).toDF("text")
model = nlpPipeline.fit(empty_data)
text = ["""Iš pagrindinės bylos matyti, kad Martin-Meat darbuotojai buvo komandiruoti į Austriją laikotarpiu nuo 2007 m iki 2012 m mėsos išpjaustymo darbams Alpenrind patalpose atlikti."""]
result = model.transform(spark.createDataFrame([text]).toDF("text"))
Results
+-----------+------------+
|chunk |ner_label |
+-----------+------------+
|Martin-Meat|ORGANISATION|
|Austriją |ADDRESS |
|2007 m |DATE |
|2012 m |DATE |
|Alpenrind |ORGANISATION|
+-----------+------------+
Model Information
Model Name: | legner_mapa |
Compatibility: | Legal NLP 1.0.0+ |
License: | Licensed |
Edition: | Official |
Input Labels: | [sentence, token, embeddings] |
Output Labels: | [ner] |
Language: | lt |
Size: | 1.4 MB |
References
The dataset is available here.
Benchmarking
label precision recall f1-score support
ADDRESS 0.86 0.75 0.80 8
AMOUNT 1.00 0.64 0.78 11
DATE 0.97 0.97 0.97 65
ORGANISATION 0.81 0.86 0.83 35
PERSON 0.87 0.84 0.85 56
macro-avg 0.90 0.87 0.89 175
macro-avg 0.90 0.81 0.85 175
weighted-avg 0.90 0.87 0.89 175