Description
The dataset consists of 12 documents taken from EUR-Lex, a multilingual corpus of court decisions and legal dispositions in the 24 official languages of the European Union.
This model extracts ADDRESS, AMOUNT, DATE, ORGANISATION, and PERSON entities from Lithuanian documents.
Predicted Entities
ADDRESS, AMOUNT, DATE, ORGANISATION, PERSON
How to use
document_assembler = nlp.DocumentAssembler()\
.setInputCol("text")\
.setOutputCol("document")
sentence_detector = nlp.SentenceDetectorDLModel.pretrained("sentence_detector_dl", "xx")\
.setInputCols(["document"])\
.setOutputCol("sentence")
tokenizer = nlp.Tokenizer()\
.setInputCols(["sentence"])\
.setOutputCol("token")
embeddings = nlp.BertEmbeddings.pretrained("bert_embeddings_base_lt_cased", "lt")\
.setInputCols(["sentence", "token"])\
.setOutputCol("embeddings")\
.setMaxSentenceLength(512)\
.setCaseSensitive(True)
ner_model = legal.NerModel.pretrained("legner_mapa", "lt", "legal/models")\
.setInputCols(["sentence", "token", "embeddings"])\
.setOutputCol("ner")
ner_converter = nlp.NerConverter()\
.setInputCols(["sentence", "token", "ner"])\
.setOutputCol("ner_chunk")
nlpPipeline = nlp.Pipeline(stages=[
document_assembler,
sentence_detector,
tokenizer,
embeddings,
ner_model,
ner_converter])
empty_data = spark.createDataFrame([[""]]).toDF("text")
model = nlpPipeline.fit(empty_data)
text = ["""Iš pagrindinės bylos matyti, kad Martin-Meat darbuotojai buvo komandiruoti į Austriją laikotarpiu nuo 2007 m iki 2012 m mėsos išpjaustymo darbams Alpenrind patalpose atlikti."""]
result = model.transform(spark.createDataFrame([text]).toDF("text"))
Results
+-----------+------------+
|chunk |ner_label |
+-----------+------------+
|Martin-Meat|ORGANISATION|
|Austriją |ADDRESS |
|2007 m |DATE |
|2012 m |DATE |
|Alpenrind |ORGANISATION|
+-----------+------------+
Model Information
| Model Name: | legner_mapa |
| Compatibility: | Legal NLP 1.0.0+ |
| License: | Licensed |
| Edition: | Official |
| Input Labels: | [sentence, token, embeddings] |
| Output Labels: | [ner] |
| Language: | lt |
| Size: | 1.4 MB |
References
The dataset is available here.
Benchmarking
label precision recall f1-score support
ADDRESS 0.86 0.75 0.80 8
AMOUNT 1.00 0.64 0.78 11
DATE 0.97 0.97 0.97 65
ORGANISATION 0.81 0.86 0.83 35
PERSON 0.87 0.84 0.85 56
macro-avg 0.90 0.87 0.89 175
macro-avg 0.90 0.81 0.85 175
weighted-avg 0.90 0.87 0.89 175