Legal NER for MAPA(Multilingual Anonymisation for Public Administrations)

Description

The dataset consists of 12 documents taken from EUR-Lex, a multilingual corpus of court decisions and legal dispositions in the 24 official languages of the European Union.

This model extracts ADDRESS, AMOUNT, DATE, ORGANISATION, and PERSON entities from Romanian documents.

Predicted Entities

ADDRESS, AMOUNT, DATE, ORGANISATION, PERSON

Download Copy S3 URI

How to use

document_assembler = nlp.DocumentAssembler()\
        .setInputCol("text")\
        .setOutputCol("document")

sentence_detector = nlp.SentenceDetectorDLModel.pretrained("sentence_detector_dl", "xx")\
        .setInputCols(["document"])\
        .setOutputCol("sentence")

tokenizer = nlp.Tokenizer()\
        .setInputCols(["sentence"])\
        .setOutputCol("token")

embeddings = nlp.BertEmbeddings.pretrained("bert_embeddings_base_ro_cased", "ro")\
        .setInputCols(["sentence", "token"])\
        .setOutputCol("embeddings")\
        .setMaxSentenceLength(512)\
        .setCaseSensitive(True)

ner_model = legal.NerModel.pretrained("legner_mapa", "ro", "legal/models")\
        .setInputCols(["sentence", "token", "embeddings"])\
        .setOutputCol("ner")

ner_converter = nlp.NerConverter()\
        .setInputCols(["sentence", "token", "ner"])\
        .setOutputCol("ner_chunk")

nlpPipeline = nlp.Pipeline(stages=[
        document_assembler,
        sentence_detector,
        tokenizer,
        embeddings,
        ner_model,
        ner_converter])

empty_data = spark.createDataFrame([[""]]).toDF("text")

model = nlpPipeline.fit(empty_data)

text = ["""Or, rezultă din hotărârea Curții de Apel București din 12 iunie 2013 că instanța română a aplicat greșit dreptul Uniunii (32) atunci când a respins excepția de litispendență invocată de domnul Liberato, întemeiată pe cererile referitoare la legătura matrimonială."""]

result = model.transform(spark.createDataFrame([text]).toDF("text"))

Results

+---------------+---------+
|chunk          |ner_label|
+---------------+---------+
|București      |ADDRESS  |
|12 iunie 2013  |DATE     |
|domnul Liberato|PERSON   |
+---------------+---------+

Model Information

Model Name: legner_mapa
Compatibility: Legal NLP 1.0.0+
License: Licensed
Edition: Official
Input Labels: [sentence, token, embeddings]
Output Labels: [ner]
Language: ro
Size: 1.4 MB

References

The dataset is available here.

Benchmarking

label         precision  recall  f1-score  support 
ADDRESS       0.88       0.96    0.92      23      
AMOUNT        1.00       0.67    0.80      3       
DATE          0.97       0.97    0.97      31      
ORGANISATION  0.67       0.71    0.69      28      
PERSON        0.91       0.83    0.87      48      
macro-avg     0.86       0.86    0.86      133     
macro-avg     0.88       0.83    0.85      133     
weighted-avg  0.87       0.86    0.86      133