Description
The dataset consists of 12 documents taken from EUR-Lex, a multilingual corpus of court decisions and legal dispositions in the 24 official languages of the European Union.
This model extracts ADDRESS
, AMOUNT
, DATE
, ORGANISATION
, and PERSON
entities from Romanian
documents.
Predicted Entities
ADDRESS
, AMOUNT
, DATE
, ORGANISATION
, PERSON
How to use
document_assembler = nlp.DocumentAssembler()\
.setInputCol("text")\
.setOutputCol("document")
sentence_detector = nlp.SentenceDetectorDLModel.pretrained("sentence_detector_dl", "xx")\
.setInputCols(["document"])\
.setOutputCol("sentence")
tokenizer = nlp.Tokenizer()\
.setInputCols(["sentence"])\
.setOutputCol("token")
embeddings = nlp.BertEmbeddings.pretrained("bert_embeddings_base_ro_cased", "ro")\
.setInputCols(["sentence", "token"])\
.setOutputCol("embeddings")\
.setMaxSentenceLength(512)\
.setCaseSensitive(True)
ner_model = legal.NerModel.pretrained("legner_mapa", "ro", "legal/models")\
.setInputCols(["sentence", "token", "embeddings"])\
.setOutputCol("ner")
ner_converter = nlp.NerConverter()\
.setInputCols(["sentence", "token", "ner"])\
.setOutputCol("ner_chunk")
nlpPipeline = nlp.Pipeline(stages=[
document_assembler,
sentence_detector,
tokenizer,
embeddings,
ner_model,
ner_converter])
empty_data = spark.createDataFrame([[""]]).toDF("text")
model = nlpPipeline.fit(empty_data)
text = ["""Or, rezultă din hotărârea Curții de Apel București din 12 iunie 2013 că instanța română a aplicat greșit dreptul Uniunii (32) atunci când a respins excepția de litispendență invocată de domnul Liberato, întemeiată pe cererile referitoare la legătura matrimonială."""]
result = model.transform(spark.createDataFrame([text]).toDF("text"))
Results
+---------------+---------+
|chunk |ner_label|
+---------------+---------+
|București |ADDRESS |
|12 iunie 2013 |DATE |
|domnul Liberato|PERSON |
+---------------+---------+
Model Information
Model Name: | legner_mapa |
Compatibility: | Legal NLP 1.0.0+ |
License: | Licensed |
Edition: | Official |
Input Labels: | [sentence, token, embeddings] |
Output Labels: | [ner] |
Language: | ro |
Size: | 1.4 MB |
References
The dataset is available here.
Benchmarking
label precision recall f1-score support
ADDRESS 0.88 0.96 0.92 23
AMOUNT 1.00 0.67 0.80 3
DATE 0.97 0.97 0.97 31
ORGANISATION 0.67 0.71 0.69 28
PERSON 0.91 0.83 0.87 48
macro-avg 0.86 0.86 0.86 133
macro-avg 0.88 0.83 0.85 133
weighted-avg 0.87 0.86 0.86 133