Description
This is a NER model, aimed to be run only after detecting the USE_OF_CONF_INFO
clause with a proper classifier (use legmulticlf_mnda_sections_paragraph_other for that purpose). It will extract the following entities: PERMISSION
, PERMISSION_SUBJECT
, PERMISSION_OBJECT
, and PERMISSION_IND_OBJECT
.
Predicted Entities
PERMISSION
, PERMISSION_SUBJECT
, PERMISSION_OBJECT
, PERMISSION_IND_OBJECT
How to use
document_assembler = nlp.DocumentAssembler()\
.setInputCol("text")\
.setOutputCol("document")
sentence_detector = nlp.SentenceDetector()\
.setInputCols(["document"])\
.setOutputCol("sentence")
tokenizer = nlp.Tokenizer()\
.setInputCols(["sentence"])\
.setOutputCol("token")
embeddings = nlp.RoBertaEmbeddings.pretrained("roberta_embeddings_legal_roberta_base","en") \
.setInputCols(["sentence", "token"]) \
.setOutputCol("embeddings")\
.setMaxSentenceLength(512)\
.setCaseSensitive(True)
ner_model = legal.NerModel.pretrained("legner_nda_confidential_information_permissions", "en", "legal/models")\
.setInputCols(["sentence", "token", "embeddings"])\
.setOutputCol("ner")
ner_converter = nlp.NerConverter()\
.setInputCols(["sentence", "token", "ner"])\
.setOutputCol("ner_chunk")
nlpPipeline = nlp.Pipeline(stages=[
document_assembler,
sentence_detector,
tokenizer,
embeddings,
ner_model,
ner_converter])
empty_data = spark.createDataFrame([[""]]).toDF("text")
model = nlpPipeline.fit(empty_data)
text = ["""The interested party may disclose the information to its financing sources and potential financing sources provided that such financing sources are bound by the terms of this non-disclosure agreement and agree to keep the information confidential."""]
result = model.transform(spark.createDataFrame([text]).toDF("text"))
Results
+---------------------------+---------------------+
|chunk |ner_label |
+---------------------------+---------------------+
|interested party |PERMISSION_SUBJECT |
|disclose |PERMISSION |
|information |PERMISSION_OBJECT |
|financing sources |PERMISSION_IND_OBJECT|
|potential financing sources|PERMISSION_IND_OBJECT|
+---------------------------+---------------------+
Model Information
Model Name: | legner_nda_confidential_information_permissions |
Compatibility: | Legal NLP 1.0.0+ |
License: | Licensed |
Edition: | Official |
Input Labels: | [sentence, token, embeddings] |
Output Labels: | [ner] |
Language: | en |
Size: | 16.3 MB |
References
In-house annotations on the Non-disclosure Agreements
Benchmarking
label precision recall f1-score support
PERMISSION 1.00 1.00 1.00 9
PERMISSION_IND_OBJECT 1.00 0.67 0.80 9
PERMISSION_OBJECT 0.91 1.00 0.95 10
PERMISSION_SUBJECT 0.90 1.00 0.95 9
micro-avg 0.94 0.92 0.93 37
macro-avg 0.95 0.92 0.92 37
weighted-avg 0.95 0.92 0.93 37