Description
This is a NER model, aimed to be run only after detecting the APPLIC_LAW
clause with a proper classifier (use legmulticlf_mnda_sections_paragraph_other for that purpose). It will extract the following entities: LAW
, and LAW_LOCATION
.
Predicted Entities
LAW
, LAW_LOCATION
How to use
document_assembler = nlp.DocumentAssembler()\
.setInputCol("text")\
.setOutputCol("document")
sentence_detector = nlp.SentenceDetector()\
.setInputCols(["document"])\
.setOutputCol("sentence")
tokenizer = nlp.Tokenizer()\
.setInputCols(["sentence"])\
.setOutputCol("token")
embeddings = nlp.RoBertaEmbeddings.pretrained("roberta_embeddings_legal_roberta_base","en") \
.setInputCols(["sentence", "token"]) \
.setOutputCol("embeddings")\
.setMaxSentenceLength(512)\
.setCaseSensitive(True)
ner_model = legal.NerModel.pretrained("legner_nda_applicable_law", "en", "legal/models")\
.setInputCols(["sentence", "token", "embeddings"])\
.setOutputCol("ner")
ner_converter = nlp.NerConverter()\
.setInputCols(["sentence", "token", "ner"])\
.setOutputCol("ner_chunk")
nlpPipeline = nlp.Pipeline(stages=[
document_assembler,
sentence_detector,
tokenizer,
embeddings,
ner_model,
ner_converter])
empty_data = spark.createDataFrame([[""]]).toDF("text")
model = nlpPipeline.fit(empty_data)
text = ["""This Agreement will be governed and construed in accordance with the laws of the State of Utah without regard to the conflicts of laws or principles thereof."""]
result = model.transform(spark.createDataFrame([text]).toDF("text"))
Results
+-------------+------------+
|chunk |ner_label |
+-------------+------------+
|laws |LAW |
|State of Utah|LAW_LOCATION|
|laws |LAW |
+-------------+------------+
Model Information
Model Name: | legner_nda_applicable_law |
Compatibility: | Legal NLP 1.0.0+ |
License: | Licensed |
Edition: | Official |
Input Labels: | [sentence, token, embeddings] |
Output Labels: | [ner] |
Language: | en |
Size: | 16.3 MB |
References
In-house annotations on the Non-disclosure Agreements
Benchmarking
label precision recall f1-score support
LAW 0.97 0.97 0.97 70
LAW_LOCATION 0.92 0.94 0.93 51
micro-avg 0.95 0.96 0.95 121
macro-avg 0.95 0.96 0.95 121
weighted-avg 0.95 0.96 0.95 121