Legal NER for NDA (Dispute Resolution Clause)

Description

This is a NER model, aimed to be run only after detecting the DISPUTE_RESOL clause with a proper classifier (use legmulticlf_mnda_sections_paragraph_other for that purpose). It will extract the following entities: COURT_NAME, LAW_LOCATION , and RESOLUT_MEANS .

Predicted Entities

COURT_NAME, LAW_LOCATION, RESOLUT_MEANS

Download Copy S3 URI

How to use

document_assembler = nlp.DocumentAssembler()\
        .setInputCol("text")\
        .setOutputCol("document")
        
sentence_detector = nlp.SentenceDetector()\
        .setInputCols(["document"])\
        .setOutputCol("sentence")

tokenizer = nlp.Tokenizer()\
        .setInputCols(["sentence"])\
        .setOutputCol("token")

embeddings = nlp.RoBertaEmbeddings.pretrained("roberta_embeddings_legal_roberta_base","en") \
        .setInputCols(["sentence", "token"]) \
        .setOutputCol("embeddings")\
        .setMaxSentenceLength(512)\
        .setCaseSensitive(True)

ner_model = legal.NerModel.pretrained("legner_nda_dispute_resolution", "en", "legal/models")\
        .setInputCols(["sentence", "token", "embeddings"])\
        .setOutputCol("ner")

ner_converter = nlp.NerConverter()\
        .setInputCols(["sentence", "token", "ner"])\
        .setOutputCol("ner_chunk")

nlpPipeline = nlp.Pipeline(stages=[
        document_assembler,
        sentence_detector,
        tokenizer,
        embeddings,
        ner_model,
        ner_converter])

empty_data = spark.createDataFrame([[""]]).toDF("text")

model = nlpPipeline.fit(empty_data)

text = ["""In case no settlement can be reached through consultation within thirty ( 30 ) days after such dispute is raised, each party can submit such matter to China International Economic and Trade Arbitration Commission ( the "CIETAC") in accordance with its rules."""]

result = model.transform(spark.createDataFrame([text]).toDF("text"))

Results

+-------------------------------------------------------+-------------+
|chunk                                                  |ner_label    |
+-------------------------------------------------------+-------------+
|consultation                                           |RESOLUT_MEANS|
|China                                                  |LAW_LOCATION |
|International Economic and Trade Arbitration Commission|COURT_NAME   |
+-------------------------------------------------------+-------------+

Model Information

Model Name: legner_nda_dispute_resolution
Compatibility: Legal NLP 1.0.0+
License: Licensed
Edition: Official
Input Labels: [sentence, token, embeddings]
Output Labels: [ner]
Language: en
Size: 16.3 MB

References

In-house annotations on the Non-disclosure Agreements

Benchmarking

label          precision  recall  f1-score  support 
COURT_NAME     0.86       0.89    0.88      75      
LAW_LOCATION   0.79       0.85    0.82      79      
RESOLUT_MEANS  0.88       0.88    0.88      58      
micro-avg      0.84       0.87    0.85      212     
macro-avg      0.84       0.87    0.86      212     
weighted-avg   0.84       0.87    0.85      212