Description
This model is a BioBERT based classifier that can identify stress in social media (Twitter) posts in the self-disclosure category. The model finds whether a person claims he/she is stressed or not.
Predicted Entities
not-stressed, stressed
How to use
document_assembler = DocumentAssembler() \
    .setInputCol("text") \
    .setOutputCol("document")
tokenizer = Tokenizer() \
    .setInputCols(["document"]) \
    .setOutputCol("token")
sequence_classifier = MedicalBertForSequenceClassification.pretrained("bert_sequence_classifier_self_reported_stress_tweet_onnx", "en", "clinical/models")\
  .setInputCols(["document", "token"])\
  .setOutputCol("class")
pipeline = Pipeline(stages=[
    document_assembler, 
    tokenizer,
    sequence_classifier    
])
data = spark.createDataFrame([["Do you feel stressed?"], 
                              ["I'm so stressed!"],
                              ["Depression and anxiety will probably end up killing me – I feel so stressed all the time and just feel awful."], 
                              ["Do you enjoy living constantly in this self-inflicted stress?"]]).toDF("text")
model = pipeline.fit(data)
result = model.transform(data)
document_assembler = nlp.DocumentAssembler() \
    .setInputCol("text") \
    .setOutputCol("document")
tokenizer = nlp.Tokenizer() \
    .setInputCols(["document"]) \
    .setOutputCol("token")
sequenceClassifier = medical.BertForSequenceClassification.pretrained("bert_sequence_classifier_self_reported_stress_tweet_onnx", "en", "clinical/models")\
    .setInputCols(["document","token"])\
    .setOutputCol("classes")
pipeline = nlp.Pipeline(stages=[
    document_assembler,
    tokenizer,
    sequenceClassifier
])
data = spark.createDataFrame([["Do you feel stressed?"], 
                              ["I'm so stressed!"],
                              ["Depression and anxiety will probably end up killing me – I feel so stressed all the time and just feel awful."], 
                              ["Do you enjoy living constantly in this self-inflicted stress?"]]).toDF("text")
model = pipeline.fit(data)
result = model.transform(data)
val document_assembler = new DocumentAssembler() 
    .setInputCol("text") 
    .setOutputCol("document")
val tokenizer = new Tokenizer() 
    .setInputCols(Array("document")) 
    .setOutputCol("token")
val sequenceClassifier = MedicalBertForSequenceClassification.pretrained("bert_sequence_classifier_self_reported_stress_tweet_onnx", "en", "clinical/models")
  .setInputCols(Array("document","token"))
  .setOutputCol("class")
val pipeline = new Pipeline().setStages(Array(document_assembler, tokenizer, sequenceClassifier))
val data = Seq(
  "Do you feel stressed!",
  "I'm so stressed!",
  "Depression and anxiety will probably end up killing me – I feel so stressed all the time and just feel awful.",
  "Do you enjoy living constantly in this self-inflicted stress?"
).toDF("text")
val model = pipeline.fit(data)
val result = model.transform(data)
Results
+-------------------------------------------------------------------------------------------------------------+--------------+
|text                                                                                                         |result        |
+-------------------------------------------------------------------------------------------------------------+--------------+
|Do you feel stressed?                                                                                        |[not-stressed]|
|I'm so stressed!                                                                                             |[stressed]    |
|Depression and anxiety will probably end up killing me – I feel so stressed all the time and just feel awful.|[stressed]    |
|Do you enjoy living constantly in this self-inflicted stress?                                                |[not-stressed]|
+-------------------------------------------------------------------------------------------------------------+--------------+
Model Information
| Model Name: | bert_sequence_classifier_self_reported_stress_tweet_onnx | 
| Compatibility: | Healthcare NLP 6.1.1+ | 
| License: | Licensed | 
| Edition: | Official | 
| Input Labels: | [document, token] | 
| Output Labels: | [label] | 
| Language: | en | 
| Size: | 437.7 MB | 
| Case sensitive: | true |