Self Reported Stress Classifier (BioBERT) ONNX

Description

This model is a BioBERT based classifier that can identify stress in social media (Twitter) posts in the self-disclosure category. The model finds whether a person claims he/she is stressed or not.

Predicted Entities

not-stressed, stressed

Copy S3 URI

How to use

document_assembler = DocumentAssembler() \
    .setInputCol("text") \
    .setOutputCol("document")

tokenizer = Tokenizer() \
    .setInputCols(["document"]) \
    .setOutputCol("token")

sequence_classifier = MedicalBertForSequenceClassification.pretrained("bert_sequence_classifier_self_reported_stress_tweet_onnx", "en", "clinical/models")\
  .setInputCols(["document", "token"])\
  .setOutputCol("class")

pipeline = Pipeline(stages=[
    document_assembler, 
    tokenizer,
    sequence_classifier    
])

data = spark.createDataFrame([["Do you feel stressed?"], 
                              ["I'm so stressed!"],
                              ["Depression and anxiety will probably end up killing me – I feel so stressed all the time and just feel awful."], 
                              ["Do you enjoy living constantly in this self-inflicted stress?"]]).toDF("text")

model = pipeline.fit(data)
result = model.transform(data)
document_assembler = nlp.DocumentAssembler() \
    .setInputCol("text") \
    .setOutputCol("document")

tokenizer = nlp.Tokenizer() \
    .setInputCols(["document"]) \
    .setOutputCol("token")

sequenceClassifier = medical.BertForSequenceClassification.pretrained("bert_sequence_classifier_self_reported_stress_tweet_onnx", "en", "clinical/models")\
    .setInputCols(["document","token"])\
    .setOutputCol("classes")

pipeline = nlp.Pipeline(stages=[
    document_assembler,
    tokenizer,
    sequenceClassifier
])

data = spark.createDataFrame([["Do you feel stressed?"], 
                              ["I'm so stressed!"],
                              ["Depression and anxiety will probably end up killing me – I feel so stressed all the time and just feel awful."], 
                              ["Do you enjoy living constantly in this self-inflicted stress?"]]).toDF("text")

model = pipeline.fit(data)
result = model.transform(data)

val document_assembler = new DocumentAssembler() 
    .setInputCol("text") 
    .setOutputCol("document")

val tokenizer = new Tokenizer() 
    .setInputCols(Array("document")) 
    .setOutputCol("token")

val sequenceClassifier = MedicalBertForSequenceClassification.pretrained("bert_sequence_classifier_self_reported_stress_tweet_onnx", "en", "clinical/models")
  .setInputCols(Array("document","token"))
  .setOutputCol("class")

val pipeline = new Pipeline().setStages(Array(document_assembler, tokenizer, sequenceClassifier))

val data = Seq(
  "Do you feel stressed!",
  "I'm so stressed!",
  "Depression and anxiety will probably end up killing me – I feel so stressed all the time and just feel awful.",
  "Do you enjoy living constantly in this self-inflicted stress?"
).toDF("text")

val model = pipeline.fit(data)
val result = model.transform(data)

Results


+-------------------------------------------------------------------------------------------------------------+--------------+
|text                                                                                                         |result        |
+-------------------------------------------------------------------------------------------------------------+--------------+
|Do you feel stressed?                                                                                        |[not-stressed]|
|I'm so stressed!                                                                                             |[stressed]    |
|Depression and anxiety will probably end up killing me – I feel so stressed all the time and just feel awful.|[stressed]    |
|Do you enjoy living constantly in this self-inflicted stress?                                                |[not-stressed]|
+-------------------------------------------------------------------------------------------------------------+--------------+

Model Information

Model Name: bert_sequence_classifier_self_reported_stress_tweet_onnx
Compatibility: Healthcare NLP 6.1.1+
License: Licensed
Edition: Official
Input Labels: [document, token]
Output Labels: [label]
Language: en
Size: 437.7 MB
Case sensitive: true