Description
Classification of Self-Reported Intimate Partner Violence on Twitter. This model involves the detection the potential IPV victims on social media platforms (in English tweets).
Predicted Entities
intimate_partner_violence
, non-intimate_partner_violence
How to use
document_assembler = DocumentAssembler() \
.setInputCol("text") \
.setOutputCol("document")
tokenizer = Tokenizer() \
.setInputCols(["document"]) \
.setOutputCol("token")
sequence_classifier = MedicalBertForSequenceClassification.pretrained("bert_sequence_classifier_self_reported_partner_violence_tweet_onnx", "en", "clinical/models")\
.setInputCols(["document", "token"])\
.setOutputCol("class")
pipeline = Pipeline(stages=[
document_assembler,
tokenizer,
sequence_classifier
])
data = spark.createDataFrame(["I am fed up with this toxic relation.I hate my husband.",
"Can i say something real quick I ve never been one to publicly drag an ex partner and sometimes I regret that. I ve been reflecting on the harm, abuse and violence that was done to me and those bitches are truly lucky I chose peace amp therapy because they are trash forreal."], StringType()).toDF("text")
model = pipeline.fit(data)
result = model.transform(data)
document_assembler = nlp.DocumentAssembler() \
.setInputCol("text") \
.setOutputCol("document")
tokenizer = nlp.Tokenizer() \
.setInputCols(["document"]) \
.setOutputCol("token")
sequenceClassifier = medical.BertForSequenceClassification.pretrained("bert_sequence_classifier_self_reported_partner_violence_tweet_onnx", "en", "clinical/models")\
.setInputCols(["document","token"])\
.setOutputCol("classes")
pipeline = nlp.Pipeline(stages=[
document_assembler,
tokenizer,
sequenceClassifier
])
example = spark.createDataFrame(["I am fed up with this toxic relation.I hate my husband.",
"Can i say something real quick I ve never been one to publicly drag an ex partner and sometimes I regret that. I ve been reflecting on the harm, abuse and violence that was done to me and those bitches are truly lucky I chose peace amp therapy because they are trash forreal."], StringType()).toDF("text")
model = pipeline.fit(data)
result = model.transform(data)
val document_assembler = new DocumentAssembler()
.setInputCol("text")
.setOutputCol("document")
val tokenizer = new Tokenizer()
.setInputCols(Array("document"))
.setOutputCol("token")
val sequenceClassifier = MedicalBertForSequenceClassification.pretrained("bert_sequence_classifier_self_reported_partner_violence_tweet_onnx", "en", "clinical/models")
.setInputCols(Array("document","token"))
.setOutputCol("class")
val pipeline = new Pipeline().setStages(Array(document_assembler, tokenizer, sequenceClassifier))
val example = Seq(Array("I am fed up with this toxic relation.I hate my husband.",
"Can i say something real quick I ve never been one to publicly drag an ex partner and sometimes I regret that. I ve been reflecting on the harm, abuse and violence that was done to me and those bitches are truly lucky I chose peace amp therapy because they are trash forreal.")).toDF("text")
val model = pipeline.fit(data)
val result = model.transform(data)
Results
+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+-------------------------------+
|text |result |
+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+-------------------------------+
|I am fed up with this toxic relation.I hate my husband. |[non-intimate_partner_violence]|
|Can i say something real quick I ve never been one to publicly drag an ex partner and sometimes I regret that. I ve been reflecting on the harm, abuse and violence that was done to me and those bitches are truly lucky I chose peace amp therapy because they are trash forreal.|[intimate_partner_violence] |
+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+-------------------------------+
Model Information
Model Name: | bert_sequence_classifier_self_reported_partner_violence_tweet_onnx |
Compatibility: | Healthcare NLP 6.1.1+ |
License: | Licensed |
Edition: | Official |
Input Labels: | [document, token] |
Output Labels: | [label] |
Language: | en |
Size: | 437.7 MB |
Case sensitive: | true |