Pipeline for Extracting Clinical Entities Related to UMLS CUI Codes

Description

This pipeline is designed to extract all entities mappable to UMLS CUI codes.

Copy S3 URI

How to use


from sparknlp.pretrained import PretrainedPipeline

ner_pipeline = PretrainedPipeline("ner_umls_clinical_findings_pipeline", "en", "clinical/models")

result = ner_pipeline.annotate("""HTG-induced pancreatitis associated with an acute hepatitis, and obesity.""")


import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline

val ner_pipeline = PretrainedPipeline("ner_umls_clinical_findings_pipeline", "en", "clinical/models")

val result = ner_pipeline.annotate("""HTG-induced pancreatitis associated with an acute hepatitis, and obesity.""")

Results

|    | chunks                   |   begin |   end | entities   |
|---:|:-------------------------|--------:|------:|:-----------|
|  0 | HTG-induced pancreatitis |       1 |    24 | PROBLEM    |
|  1 | an acute hepatitis       |      42 |    59 | PROBLEM    |
|  2 | obesity                  |      66 |    72 | PROBLEM    |

Model Information

Model Name: ner_umls_clinical_findings_pipeline
Type: pipeline
Compatibility: Healthcare NLP 6.0.2+
License: Licensed
Edition: Official
Language: en
Size: 1.7 GB

Included Models

  • DocumentAssembler
  • SentenceDetectorDLModel
  • TokenizerModel
  • WordEmbeddingsModel
  • MedicalNerModel
  • NerConverterInternalModel