Pipeline for Extracting Clinical Entities Related to UMLS CUI (Clinical Drug) Codes

Description

This pipeline is designed to extract all entities mappable to UMLS CUI (Clinical Drug) codes.

Copy S3 URI

How to use


from sparknlp.pretrained import PretrainedPipeline

ner_pipeline = PretrainedPipeline("ner_umls_clinical_drugs_pipeline", "en", "clinical/models")

result = ner_pipeline.annotate("""The patient was given Adapin 10 MG, coumadn 5 mg, Avandia 4 mg, Tegretol, zitiga.""")


import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline

val ner_pipeline = PretrainedPipeline("ner_umls_clinical_drugs_pipeline", "en", "clinical/models")

val result = ner_pipeline.annotate("""The patient was given Adapin 10 MG, coumadn 5 mg, Avandia 4 mg, Tegretol, zitiga.""")

Results

|    | chunks       |   begin |   end | entities   |
|---:|:-------------|--------:|------:|:-----------|
|  0 | Adapin 10 MG |      23 |    34 | DRUG       |
|  1 | coumadn 5 mg |      37 |    48 | DRUG       |
|  2 | Avandia 4 mg |      51 |    62 | DRUG       |
|  3 | Tegretol     |      65 |    72 | DRUG       |
|  4 | zitiga       |      75 |    80 | DRUG       |

Model Information

Model Name: ner_umls_clinical_drugs_pipeline
Type: pipeline
Compatibility: Healthcare NLP 6.0.2+
License: Licensed
Edition: Official
Language: en
Size: 1.7 GB

Included Models

  • DocumentAssembler
  • SentenceDetectorDLModel
  • TokenizerModel
  • WordEmbeddingsModel
  • MedicalNerModel
  • NerConverter
  • TextMatcherInternalModel
  • ChunkMergeModel