Description
This pipeline can be used to mask PHI information in PDFs. Masked entities include ‘HOSPITAL’, ‘NAME’, ‘PATIENT’, ‘ID’,’MEDICALRECORD’, ‘IDNUM’, ‘COUNTRY’, ‘LOCATION’, ‘STREET’, ‘STATE’, ‘ZIP’, ‘CONTACT’, ‘PHONE’, ‘DATE’. The output is a PDF document, similar to the one at the input, but with black bounding boxes on top of the targeted entities, also includes removing signatures.
How to use
from sparknlp.pretrained import PretrainedPipeline
deid_pipeline = PretrainedPipeline("pdf_deid_multilingual_name_plus_signature_aware", "en", "clinical/ocr")
Model Information
Model Name: | pdf_deid_multilingual_name_plus_signature_aware |
Type: | pipeline |
Compatibility: | Healthcare NLP 6.0.0+ |
License: | Licensed |
Edition: | Official |
Language: | en |
Size: | 4.0 GB |
Included Models
- PdfToImage
- ImageToText
- DocumentAssembler
- SentenceDetectorDLModel
- RegexTokenizer
- PretrainedZeroShotNER
- NerConverter
- WordEmbeddingsModel
- MedicalNerModel
- NerConverter
- XLMRobertaEmbeddings
- MedicalNerModel
- NerConverter
- ContextualParser
- ChunkConverter
- Merge
- DeIdentification
- NerOutputCleaner
- PositionFinder
- ImageDrawRegions
- HW_Signature_Detector
- ImageDrawRegions
- ImageToPdf