Description
This pretrained model maps entities (Drug Substances) with their corresponding UMLS CUI codes.
Important Note
: Mappers extract additional information such as extended descriptions and categories related to Concept codes (such as RxNorm, ICD10, CPT, MESH, NDC, UMLS, etc.). They generally take Concept Codes, which are the outputs of EntityResolvers, as input. When creating a pipeline that contains ‘Mapper’, it is necessary to use the ChunkMapperModel after an EntityResolverModel.
Predicted Entities
umls_code
How to use
document_assembler = DocumentAssembler()\
.setInputCol('text')\
.setOutputCol('document')
sentence_detector = SentenceDetector()\
.setInputCols(["document"])\
.setOutputCol("sentence")
tokenizer = Tokenizer()\
.setInputCols("sentence")\
.setOutputCol("token")
word_embeddings = WordEmbeddingsModel.pretrained("embeddings_clinical", "en", "clinical/models")\\
.setInputCols(["sentence", "token"])\
.setOutputCol("embeddings")
ner_model = MedicalNerModel.pretrained("ner_posology_greedy", "en", "clinical/models")\
.setInputCols(["sentence", "token", "embeddings"])\
.setOutputCol("clinical_ner")
ner_model_converter = NerConverterInternal()\
.setInputCols(["sentence", "token", "clinical_ner"])\
.setOutputCol("ner_chunk")
chunkerMapper = ChunkMapperModel.pretrained("umls_drug_substance_mapper", "en", "clinical/models")\
.setInputCols(["ner_chunk"])\
.setOutputCol("mappings")\
.setRels(["umls_code"])\
.setLowerCase(True)
mapper_pipeline = Pipeline().setStages([
document_assembler,
sentence_detector,
tokenizer,
word_embeddings,
ner_model,
ner_model_converter,
chunkerMapper])
data = spark.createDataFrame([["""The patient was given metformin, lenvatinib and gallopamil 50 MG Oral Tablet."""]]).toDF("text")
result = mapper_pipeline.fit(data).transform(data)
document_assembler = nlp.DocumentAssembler()\
.setInputCol('text')\
.setOutputCol('document')
sentence_detector = nlp.SentenceDetector()\
.setInputCols(["document"])\
.setOutputCol("sentence")
tokenizer = nlp.Tokenizer()\
.setInputCols("sentence")\
.setOutputCol("token")
word_embeddings = nlp.WordEmbeddingsModel.pretrained("embeddings_clinical", "en", "clinical/models")\
.setInputCols(["sentence", "token"])\
.setOutputCol("embeddings")
ner_model = medical.NerModel.pretrained("ner_posology_greedy", "en", "clinical/models")\
.setInputCols(["sentence", "token", "embeddings"])\
.setOutputCol("clinical_ner")
ner_model_converter = medical.NerConverterInternal()\
.setInputCols(["sentence", "token", "clinical_ner"])\
.setOutputCol("ner_chunk")
chunkerMapper = medical.ChunkMapperModel.pretrained("umls_drug_substance_mapper", "en", "clinical/models")\
.setInputCols(["ner_chunk"])\
.setOutputCol("mappings")\
.setRels(["umls_code"])\
.setLowerCase(True)
mapper_pipeline = Pipeline().setStages([
document_assembler,
sentence_detector,
tokenizer,
word_embeddings,
ner_model,
ner_model_converter,
chunkerMapper])
data = spark.createDataFrame([["""The patient was given metformin, lenvatinib and gallopamil 50 MG Oral Tablet."""]]).toDF("text")
result = mapper_pipeline.fit(data).transform(data)
val document_assembler = new DocumentAssembler()
.setInputCol("text")
.setOutputCol("document")
val sentence_detector = new SentenceDetector()
.setInputCols(Array("document"))
.setOutputCol("sentence")
val tokenizer = new Tokenizer()
.setInputCols("sentence")
.setOutputCol("token")
val word_embeddings = WordEmbeddingsModel
.pretrained("embeddings_clinical", "en", "clinical/models")
.setInputCols(Array("sentence", "token"))
.setOutputCol("embeddings")
val ner_model = MedicalNerModel
.pretrained("ner_posology_greedy", "en", "clinical/models")
.setInputCols(Array("sentence", "token", "embeddings"))
.setOutputCol("clinical_ner")
val ner_model_converter = new NerConverterInternal()
.setInputCols(Array("sentence", "token", "clinical_ner"))
.setOutputCol("ner_chunk")
val chunkerMapper = ChunkMapperModel
.pretrained("umls_drug_substance_mapper", "en", "clinical/models")
.setInputCols(Array("ner_chunk"))
.setOutputCol("mappings")
.setRels(Array("umls_code"))
val mapper_pipeline = new Pipeline().setStages(Array(
document_assembler,
sentence_detector,
tokenizer,
word_embeddings,
ner_model,
ner_model_converter,
chunkerMapper))
val data = Seq("""The patient was given metformin, lenvatinib and gallopamil 50 MG Oral Tablet.""").toDF("text")
val result = mapper_pipeline.fit(data).transform(data)
Results
+----------------------------+---------+
|ner_chunk |umls_code|
+----------------------------+---------+
|metformin |C0025598 |
|lenvatinib |C2986924 |
|gallopamil 50 MG Oral Tablet|C0787234 |
+----------------------------+---------+
Model Information
Model Name: | umls_drug_substance_mapper |
Compatibility: | Healthcare NLP 5.5.1+ |
License: | Licensed |
Edition: | Official |
Input Labels: | [ner_chunk] |
Output Labels: | [mappings] |
Language: | en |
Size: | 43.8 MB |
References
2024AB UMLS dataset’s Clinical Drug, Pharmacologic Substance, Antibiotic, Hazardous or Poisonous Substance categories. https://www.nlm.nih.gov/research/umls/index.html