Mapping Entities (Clinical Findings) with Corresponding UMLS CUI Codes

Description

This pretrained model maps clinical entities and concepts to 4 major categories of UMLS CUI codes.

Important Note: Mappers extract additional information such as extended descriptions and categories related to Concept codes (such as RxNorm, ICD10, CPT, MESH, NDC, UMLS, etc.). They generally take Concept Codes, which are the outputs of EntityResolvers, as input. When creating a pipeline that contains ‘Mapper’, it is necessary to use the ChunkMapperModel after an EntityResolverModel.

Predicted Entities

umls_code

Copy S3 URI

How to use


document_assembler = DocumentAssembler()\
      .setInputCol('text')\
      .setOutputCol('document')

sentence_detector = SentenceDetector()\
      .setInputCols(["document"])\
      .setOutputCol("sentence")

tokenizer = Tokenizer()\
      .setInputCols("sentence")\
      .setOutputCol("token")

word_embeddings = WordEmbeddingsModel.pretrained("embeddings_clinical", "en", "clinical/models")\
      .setInputCols(["sentence", "token"])\
      .setOutputCol("embeddings")

ner_model = MedicalNerModel.pretrained("ner_clinical_large", "en", "clinical/models")\
    .setInputCols(["sentence", "token", "embeddings"])\
    .setOutputCol("clinical_ner")

ner_model_converter = NerConverterInternal()\
    .setInputCols(["sentence", "token", "clinical_ner"])\
    .setOutputCol("ner_chunk")

chunkerMapper = ChunkMapperModel.pretrained("umls_clinical_findings_mapper", "en", "clinical/models")\
      .setInputCols(["ner_chunk"])\
      .setOutputCol("mappings")\
      .setRels(["umls_code"])\
      .setLowerCase(True)

mapper_pipeline = Pipeline().setStages([
        document_assembler,
        sentence_detector,
        tokenizer,
        word_embeddings,
        ner_model,
        ner_model_converter,
        chunkerMapper])

data = spark.createDataFrame([["""A 28-year-old female with a history of obesity with BMI of 33.5 kg/m2, presented with a one-week history of reduced fatigue."""]]).toDF("text")

result = mapper_pipeline.fit(data).transform(data)


document_assembler = nlp.DocumentAssembler()\
      .setInputCol('text')\
      .setOutputCol('document')

sentence_detector = nlp.SentenceDetector()\
      .setInputCols(["document"])\
      .setOutputCol("sentence")

tokenizer = nlp.Tokenizer()\
      .setInputCols("sentence")\
      .setOutputCol("token")

word_embeddings = nlp.WordEmbeddingsModel.pretrained("embeddings_clinical", "en", "clinical/models")\
      .setInputCols(["sentence", "token"])\
      .setOutputCol("embeddings")

ner_model = medical.NerModel.pretrained("ner_clinical_large", "en", "clinical/models")\
    .setInputCols(["sentence", "token", "embeddings"])\
    .setOutputCol("clinical_ner")

ner_model_converter = medical.NerConverterInternal()\
    .setInputCols(["sentence", "token", "clinical_ner"])\
    .setOutputCol("ner_chunk")

chunkerMapper = medical.ChunkMapperModel.pretrained("umls_clinical_findings_mapper", "en", "clinical/models")\
      .setInputCols(["ner_chunk"])\
      .setOutputCol("mappings")\
      .setRels(["umls_code"])\
      .setLowerCase(True)

mapper_pipeline = Pipeline().setStages([
        document_assembler,
        sentence_detector,
        tokenizer,
        word_embeddings,
        ner_model,
        ner_model_converter,
        chunkerMapper])

data = spark.createDataFrame([["""A 28-year-old female with a history of obesity with BMI of 33.5 kg/m2, presented with a one-week history of reduced fatigue."""]]).toDF("text")

result = mapper_pipeline.fit(data).transform(data)


val document_assembler = new DocumentAssembler()
      .setInputCol("text")
      .setOutputCol("document")

val sentence_detector = new SentenceDetector()
      .setInputCols(Array("document"))
      .setOutputCol("sentence")

val tokenizer = new Tokenizer()
      .setInputCols("sentence")
      .setOutputCol("token")

val word_embeddings = WordEmbeddingsModel
      .pretrained("embeddings_clinical", "en", "clinical/models")
      .setInputCols(Array("sentence", "token"))
      .setOutputCol("embeddings")

val ner_model = MedicalNerModel
      .pretrained("ner_clinical_large", "en", "clinical/models")
      .setInputCols(Array("sentence", "token", "embeddings"))
      .setOutputCol("clinical_ner")

val ner_model_converter = new NerConverterInternal()
      .setInputCols(Array("sentence", "token", "clinical_ner"))
      .setOutputCol("ner_chunk")

val chunkerMapper = ChunkMapperModel
      .pretrained("umls_clinical_findings_mapper", "en", "clinical/models")
      .setInputCols(Array("ner_chunk"))
      .setOutputCol("mappings")
      .setRels(Array("umls_code"))

val mapper_pipeline = new Pipeline().setStages(Array(
                                                  document_assembler,
                                                  sentence_detector,
                                                  tokenizer,
                                                  word_embeddings,
                                                  ner_model,
                                                  ner_model_converter,
                                                  chunkerMapper))

val data = Seq("""A 28-year-old female with a history of obesity with BMI of 33.5 kg/m2, presented with a one-week history of reduced fatigue.""").toDF("text")

val result = mapper_pipeline.fit(data).transform(data)

Results


+---------------+---------+
|ner_chunk      |umls_code|
+---------------+---------+
|obesity        |C4759928 |
|BMI            |C0578022 |
|reduced fatigue|C5547024 |
+---------------+---------+

Model Information

Model Name: umls_clinical_findings_mapper
Compatibility: Healthcare NLP 5.5.1+
License: Licensed
Edition: Official
Input Labels: [ner_chunk]
Output Labels: [mappings]
Language: en
Size: 27.0 MB

References

Trained on concepts from clinical finding for the 2024AB release of the Unified Medical Language System® (UMLS) Knowledge Sources: https://www.nlm.nih.gov/research/umls/index.html