Pretrained Zero-Shot Named Entity Recognition (zeroshot_ner_deid_subentity_merged_medium)

Description

Zero-shot Named Entity Recognition (NER) enables the identification of entities in text with minimal effort. By leveraging pre-trained language models and contextual understanding, zero-shot NER extends entity recognition capabilities to new domains and languages.While the model card includes default labels as examples, it is important to highlight that users are not limited to these labels.

The model is designed to support any set of entity labels, allowing users to adapt it to their specific use cases. For best results, it is recommended to use labels that are conceptually similar to the provided defaults.

Predicted Entities

DOCTOR, PATIENT, AGE, DATE, HOSPITAL, CITY, STREET, STATE, COUNTRY, PHONE, IDNUM, EMAIL, ZIP, ORGANIZATION, PROFESSION, USERNAME

Copy S3 URI

How to use

document_assembler = DocumentAssembler()\
    .setInputCol("text")\
    .setOutputCol("document")
 
sentence_detector = SentenceDetector()\
    .setInputCols(["document"])\
    .setOutputCol("sentence")
 
tokenizer = Tokenizer()\
    .setInputCols(["sentence"])\
    .setOutputCol("token")
 
labels = ['DOCTOR', 'PATIENT', 'AGE', 'DATE', 'HOSPITAL', 'CITY', 'STREET', 'STATE', 'COUNTRY', 'PHONE', 'IDNUM', 'EMAIL', 'ZIP', 'ORGANIZATION', 'PROFESSION', 'USERNAME'] # You can change the entities
 
pretrained_zero_shot_ner = PretrainedZeroShotNER().pretrained("zeroshot_ner_deid_subentity_merged_medium", "en", "clinical/models")\
    .setInputCols("sentence", "token")\
    .setOutputCol("ner")\
    .setPredictionThreshold(0.5)\
    .setLabels(labels)
 
ner_converter = NerConverterInternal()\
    .setInputCols("sentence", "token", "ner")\
    .setOutputCol("ner_chunk")

pipeline = Pipeline().setStages([
    document_assembler,
    sentence_detector,
    tokenizer,
    pretrained_zero_shot_ner,
    ner_converter
])

data = spark.createDataFrame([["""Dr. John Taylor, ID: 982345, a cardiologist at St. Mary's Hospital in Boston, was contacted on 05/10/2023 regarding a 45-year-old."""]]).toDF("text")

result = pipeline.fit(data).transform(data)
document_assembler = nlp.DocumentAssembler()\
    .setInputCol("text")\
    .setOutputCol("document")
 
sentence_detector = nlp.SentenceDetector()\
    .setInputCols(["document"])\
    .setOutputCol("sentence")
 
tokenizer = nlp.Tokenizer()\
    .setInputCols(["sentence"])\
    .setOutputCol("token")
 
labels = ['DOCTOR', 'PATIENT', 'AGE', 'DATE', 'HOSPITAL', 'CITY', 'STREET', 'STATE', 'COUNTRY', 'PHONE', 'IDNUM', 'EMAIL', 'ZIP', 'ORGANIZATION', 'PROFESSION', 'USERNAME']
 
pretrained_zero_shot_ner = medical.PretrainedZeroShotNER().pretrained("zeroshot_ner_deid_subentity_merged_medium", "en", "clinical/models")\
    .setInputCols("sentence", "token")\
    .setOutputCol("ner")\
    .setPredictionThreshold(0.5)\
    .setLabels(labels)
 
ner_converter = medical.NerConverterInternal()\
    .setInputCols("sentence", "token", "ner")\
    .setOutputCol("ner_chunk")
 
 
pipeline = nlp.Pipeline().setStages([
    document_assembler,
    sentence_detector,
    tokenizer,
    pretrained_zero_shot_ner,
    ner_converter
])

data = spark.createDataFrame([["""Dr. John Taylor, ID: 982345, a cardiologist at St. Mary's Hospital in Boston, was contacted on 05/10/2023 regarding a 45-year-old."""]]).toDF("text")

result = pipeline.fit(data).transform(data)
val document_assembler = new DocumentAssembler()
    .setInputCol("text")
    .setOutputCol("document")
 
val sentence_detector = new SentenceDetector()
    .setInputCols("document")
    .setOutputCol("sentence")
 
val tokenizer = new Tokenizer()
    .setInputCols("sentence")
    .setOutputCol("token")
 
labels = ["DOCTOR", "PATIENT", "AGE", "DATE", "HOSPITAL", "CITY", "STREET", "STATE", "COUNTRY", "PHONE", "IDNUM", "EMAIL", "ZIP", "ORGANIZATION", "PROFESSION", "USERNAME"]
 
val pretrained_zero_shot_ner = PretrainedZeroShotNER().pretrained("zeroshot_ner_deid_subentity_merged_medium", "en", "clinical/models")
    .setInputCols(Array("sentence", "token"))
    .setOutputCol("ner")
    .setPredictionThreshold(0.5)
    .setLabels(labels)
 
val ner_converter = new NerConverterInternal()
    .setInputCols(Array("sentence", "token", "ner"))
    .setOutputCol("ner_chunk")
 
 
val pipeline = new Pipeline().setStages(Array(
    document_assembler,
    sentence_detector,
    tokenizer,
    pretrained_zero_shot_ner,
    ner_converter
))

val data = Seq("""Dr. John Taylor, ID: 982345, a cardiologist at St. Mary's Hospital in Boston, was contacted on 05/10/2023 regarding a 45-year-old.""").toDF("text")

val result = pipeline.fit(data).transform(data)

Results

+--------+-------------------+-----+---+----------+
|sentence|              chunk|begin|end| ner_label|
+--------+-------------------+-----+---+----------+
|       0|    Dr. John Taylor|    0| 14|    DOCTOR|
|       0|             982345|   21| 26|     IDNUM|
|       0|       cardiologist|   31| 42|PROFESSION|
|       0|St. Mary's Hospital|   47| 65|  HOSPITAL|
|       0|             Boston|   70| 75|      CITY|
|       0|         05/10/2023|   95|104|      DATE|
|       0|        45-year-old|  118|128|       AGE|
+--------+-------------------+-----+---+----------+

Model Information

Model Name: zeroshot_ner_deid_subentity_merged_medium
Compatibility: Healthcare NLP 5.5.0+
License: Licensed
Edition: Official
Language: en
Size: 706.7 MB