Description
This model maps clinical entities and concepts (like drugs/ingredients) to RxNorm codes using (bge_medembed_large_v0_1)[https://sparknlp.org/2024/10/21/bge_medembed_large_v0_1_en.html]
embeddings.
Additionally, this model returns concept classes of the drugs in the all_k_aux_labels
column.
Predicted Entities
RxNorm Codes
, Concept Classes
How to use
document_assembler = DocumentAssembler()\
.setInputCol("text")\
.setOutputCol("document")
sentenceDetectorDL = SentenceDetectorDLModel.pretrained("sentence_detector_dl_healthcare", "en", "clinical/models")\
.setInputCols(["document"])\
.setOutputCol("sentence")
tokenizer = Tokenizer()\
.setInputCols(["sentence"])\
.setOutputCol("token")
word_embeddings = WordEmbeddingsModel.pretrained("embeddings_clinical", "en", "clinical/models")\
.setInputCols(["sentence", "token"])\
.setOutputCol("word_embeddings")
ner = MedicalNerModel.pretrained("ner_posology_greedy", "en", "clinical/models")\
.setInputCols(["sentence", "token", "word_embeddings"])\
.setOutputCol("ner")
ner_converter = NerConverterInternal()\
.setInputCols(["sentence", "token", "ner"])\
.setOutputCol("ner_chunk")\
.setWhiteList(["DRUG"])
c2doc = Chunk2Doc()\
.setInputCols("ner_chunk")\
.setOutputCol("ner_chunk_doc")
bge_embedding = BGEEmbeddings.pretrained("bge_medembed_large_v0_1","en")\
.setInputCols(["ner_chunk_doc"])\
.setOutputCol("embeddings")
rxnorm_resolver = SentenceEntityResolverModel.pretrained("medmebed_large_rxnorm_augmented", "en", "clinical/models")\
.setInputCols(["embeddings"])\
.setOutputCol("rxnorm_code")\
.setDistanceFunction("EUCLIDEAN")
resolver_pipeline = Pipeline(stages = [document_assembler,
sentenceDetectorDL,
tokenizer,
word_embeddings,
ner,
ner_converter,
c2doc,
bge_embedding,
rxnorm_resolver])
data = spark.createDataFrame([["""The patient was prescribed aspirin and and Albuterol inhaler, two puffs every 4 hours as needed for asthma. He was seen by the endocrinology service and she was discharged on Coumadin 5 mg with meals , and metformin 1000 mg two times a day and Lisinopril 10 mg daily"""]]).toDF("text")
result = resolver_pipeline.fit(data).transform(data)
val document_assembler = new DocumentAssembler()
.setInputCol("text")
.setOutputCol("document")
val sentenceDetectorDL = SentenceDetectorDLModel.pretrained("sentence_detector_dl_healthcare", "en", "clinical/models")
.setInputCols(["document"])
.setOutputCol("sentence")
val tokenizer = new Tokenizer()
.setInputCols(["sentence"])
.setOutputCol("token")
val word_embeddings = WordEmbeddingsModel.pretrained("embeddings_clinical", "en", "clinical/models")
.setInputCols(Array("sentence", "token"))
.setOutputCol("word_embeddings")
val ner = MedicalNerModel.pretrained("ner_posology_greedy", "en", "clinical/models")
.setInputCols(Array("sentence", "token", "word_embeddings"))
.setOutputCol("ner")
val ner_converter = new NerConverterInternal()
.setInputCols(Array("sentence", "token", "ner"))
.setOutputCol("ner_chunk")
.setWhiteList(["DRUG"])
val c2doc = new Chunk2Doc()
.setInputCols("ner_chunk")
.setOutputCol("ner_chunk_doc")
val bge_embedding = BGEEmbeddings.pretrained("bge_medembed_large_v0_1","en")
.setInputCols(["ner_chunk_doc"])
.setOutputCol("embeddings")
val rxnorm_resolver = SentenceEntityResolverModel.pretrained("medmebed_large_rxnorm_augmented", "en", "clinical/models")
.setInputCols(["embeddings"])
.setOutputCol("rxnorm_code")
.setDistanceFunction("EUCLIDEAN")
val resolver_pipeline = new PipelineModel().setStages(Array(
document_assembler,
sentenceDetectorDL,
tokenizer,
word_embeddings,
ner,
ner_converter,
c2doc,
biolord_embedding,
rxnorm_resolver))
val data = Seq([["""The patient was prescribed aspirin and and Albuterol inhaler, two puffs every 4 hours as needed for asthma. He was seen by the endocrinology service and she was discharged on Coumadin 5 mg with meals , and metformin 1000 mg two times a day and Lisinopril 10 mg daily"""]]).toDF("text")
val result = resolver_pipeline.fit(data).transform(data)
Results
+-----------------+------+-----------+--------------------------------------------------------------------------------+--------------------------------------------------------------------------------+--------------------------------------------------------------------------------+--------------------------------------------------------------------------------+--------------------------------------------------------------------------------+
| ner_chunk|entity|rxnorm_code| all_k_resolutions| all_k_results| all_k_distances| all_k_cosine_distances| all_k_aux_labels|
+-----------------+------+-----------+--------------------------------------------------------------------------------+--------------------------------------------------------------------------------+--------------------------------------------------------------------------------+--------------------------------------------------------------------------------+--------------------------------------------------------------------------------+
| aspirin| DRUG| 1191|aspirin[aspirin]:::Empirin[Empirin]:::aluminum aspirin[aluminum aspirin]:::as...|1191:::202547:::611:::329295:::335953:::218266:::317299:::1295740:::437699:::...|0.4045:::0.4813:::0.4893:::0.4898:::0.4922:::0.4936:::0.4995:::0.5047:::0.508...|0.0818:::0.1158:::0.1197:::0.1200:::0.1211:::0.1218:::0.1247:::0.1274:::0.129...|Ingredient:::Brand Name:::Ingredient:::Clinical Drug Comp:::Clinical Drug Com...|
|Albuterol inhaler| DRUG| 1649559|albuterol Dry Powder Inhaler[albuterol Dry Powder Inhaler]:::albuterol[albute...|1649559:::435:::307779:::104514:::2108233:::1154602:::745678:::252298:::11546...|0.4190:::0.4468:::0.4481:::0.4511:::0.4546:::0.4591:::0.4687:::0.4738:::0.480...|0.0878:::0.0998:::0.1004:::0.1017:::0.1033:::0.1054:::0.1099:::0.1122:::0.115...|Clinical Drug Form:::Ingredient:::Clinical Drug:::Clinical Drug:::Clinical Dr...|
| Coumadin 5 mg| DRUG| 855333|warfarin sodium 5 MG [Coumadin]:::warfarin sodium 7.5 MG [Coumadin]:::Warfari...|855333:::855345:::330536:::855313:::855334:::855314:::438740:::855339:::85532...|0.2281:::0.3900:::0.4020:::0.4085:::0.4208:::0.4322:::0.4334:::0.4401:::0.455...|0.0260:::0.0760:::0.0808:::0.0834:::0.0885:::0.0934:::0.0939:::0.0968:::0.103...|Branded Drug Comp:::Branded Drug Comp:::Clinical Drug Comp:::Branded Drug Com...|
|metformin 1000 mg| DRUG| 316255|metformin 1000 MG[metformin 1000 MG]:::metformin hydrochloride 1000 MG[metfor...|316255:::860995:::332809:::316256:::861004:::330861:::316257:::860999:::43850...|0.0933:::0.3953:::0.4180:::0.4216:::0.4262:::0.4406:::0.4515:::0.4518:::0.465...|0.0044:::0.0781:::0.0873:::0.0889:::0.0908:::0.0971:::0.1019:::0.1020:::0.108...|Clinical Drug Comp:::Clinical Drug Comp:::Clinical Drug Comp:::Clinical Drug ...|
| Lisinopril 10 mg| DRUG| 316151|lisinopril 10 MG[lisinopril 10 MG]:::lisinopril 10 MG Oral Tablet:::lisinopri...|316151:::314076:::563611:::567576:::316156:::197885:::316153:::104377:::31615...|0.1448:::0.2378:::0.3672:::0.3938:::0.4047:::0.4163:::0.4367:::0.4398:::0.441...|0.0105:::0.0283:::0.0674:::0.0775:::0.0819:::0.0867:::0.0954:::0.0967:::0.097...|Clinical Drug Comp:::Clinical Drug:::Branded Drug Comp:::Branded Drug Comp:::...|
+-----------------+------+-----------+--------------------------------------------------------------------------------+--------------------------------------------------------------------------------+--------------------------------------------------------------------------------+--------------------------------------------------------------------------------+--------------------------------------------------------------------------------+
Model Information
Model Name: | medmebed_large_rxnorm_augmented |
Compatibility: | Healthcare NLP 5.5.0+ |
License: | Licensed |
Edition: | Official |
Input Labels: | [BGE] |
Output Labels: | [rxnorm_code] |
Language: | en |
Size: | 1.5 GB |
Case sensitive: | false |