Description
This model, extracts medical record entities from clinical texts.
How to use
document_assembler = DocumentAssembler() \
.setInputCol("text") \
.setOutputCol("document")
sentence_detector = SentenceDetectorDLModel.pretrained("sentence_detector_dl_healthcare","en","clinical/models")\
.setInputCols(["document"])\
.setOutputCol("sentence")
tokenizer = Tokenizer() \
.setInputCols(["sentence"]) \
.setOutputCol("token")
medical_record_contextual_parser = ContextualParserModel.pretrained("medical_record_parser","en","clinical/models") \
.setInputCols(["sentence", "token"]) \
.setOutputCol("chunk_medical_record")
chunk_converter = ChunkConverter() \
.setInputCols(["chunk_medical_record"]) \
.setOutputCol("ner_chunk")
parserPipeline = Pipeline(stages=[
document_assembler,
sentence_detector,
tokenizer,
medical_record_contextual_parser,
chunk_converter
])
model = parserPipeline.fit(spark.createDataFrame([[""]]).toDF("text"))
sample_text = """Month DD, YYYY
XYZ
RE: ABC
MEDICAL RECORD#: 12332
MRN: 1233567
Dear Dr. XYZ:
I saw ABC back in Neuro-Oncology Clinic today."""
result = model.transform(spark.createDataFrame([[sample_text]]).toDF("text"))
val document_assembler = new DocumentAssembler()
.setInputCol("text")
.setOutputCol("document")
val sentence_detector = SentenceDetectorDLModel.pretrained("sentence_detector_dl_healthcare","en","clinical/models")
.setInputCols("document")
.setOutputCol("sentence")
val tokenizer = new Tokenizer()
.setInputCols("sentence")
.setOutputCol("token")
val medical_record_contextual_parser = ContextualParserModel.pretrained("medical_record_parser","en","clinical/models")
.setInputCols(Array("sentence", "token"))
.setOutputCol("chunk_medical_record")
val chunk_converter = new ChunkConverter()
.setInputCols("chunk_medical_record")
.setOutputCol("ner_chunk")
val parserPipeline = new Pipeline().setStages(Array(
document_assembler,
sentence_detector,
tokenizer,
medical_record_contextual_parser,
chunk_converter
))
val sample_text = """Month DD, YYYY
XYZ
RE: ABC
MEDICAL RECORD#: 12332
MRN: 1233567
Dear Dr. XYZ:
I saw ABC back in Neuro-Oncology Clinic today."""
val data = Seq(sample_text).toDF("text")
val results = parserPipeline.fit(data).transform(data)
Results
+-------+-----+---+-------------+
| chunk|begin|end| label|
+-------+-----+---+-------------+
| 12332| 44| 48|MEDICALRECORD|
|1233567| 55| 61|MEDICALRECORD|
+-------+-----+---+-------------+
Model Information
Model Name: | medical_record_parser |
Compatibility: | Healthcare NLP 5.5.0+ |
License: | Licensed |
Edition: | Official |
Input Labels: | [sentence, token] |
Output Labels: | [med_code] |
Language: | en |
Size: | 9.3 KB |
Case sensitive: | false |