Relation Extraction optimized with GeoLayoutLM

Description

The GeoLayoutLM model, introduced in the paper “GeoLayoutLM: Geometric Pre-training for Visual Information Extraction” by Chuwei Luo, Changxu Cheng, Qi Zheng, and Cong Yao, presents a new approach for visual information extraction (VIE) using geometric pre-training.

GeoLayoutLM is designed as a multi-modal framework that handles tasks like Semantic Entity Recognition (SER) and Relation Extraction (RE). What sets it apart is the use of geometric pre-training, along with specialized relation heads that are fine-tuned for the RE task. These features help to improve the model’s understanding of spatial relationships in documents. As a result, GeoLayoutLM achieves strong performance in SER and significantly outperforms previous models in RE, showcasing its ability to handle specific tasks in the VIE field.

Predicted Entities

other, b-header, i-header, b-question, i-question, b-answer, i-answer.

Live Demo Open in Colab Download –> Copy S3 URI

How to use

binary_to_image = BinaryToImage() \
    .setImageType(ImageType.TYPE_3BYTE_BGR)

ocr = ImageToHocr() \
    .setInputCol("image") \
    .setOutputCol("hocr") \
    .setIgnoreResolution(False) \
    .setOcrParams(["preserve_interword_spaces=0"]) \
    .setPageSegMode(PageSegmentationMode.SPARSE_TEXT)

tokenizer = BrosHocrTokenizer.pretrained("bros_hocr_tokenizer", "en", "clinical/ocr/") \
    .setInputCol("hocr") \
    .setOutputCol("tokens")

hocr_to_features = HocrToFeatures() \
    .setInputCols(["tokens", "image"]) \
    .setOutputCol("features")

ner = VisualDocumentNerGeo().pretrained("visual_ner_geo_v2", "en", "clinical/ocr/") \
    .setInputCols(["features", "tokens", "image"]) \
    .setWhiteList(["other", "i-header", "b-header", "i-question", "b-question", "i-answer", "b-answer"]) \
    .setLabels(["other", "i-header", "b-header", "i-question", "b-question", "i-answer", "b-answer"]) \
    .setOutputCol("entities")

draw_annotations = ImageDrawAnnotations() \
    .setInputCol("image") \
    .setInputChunksCol("entities") \
    .setOutputCol("image_with_annotations") \
    .setFilledRect(False)

hocr_to_features1 = HocrToFeatures() \
    .setInputCols(["entities", "image"]) \
    .setOutputCol("features1")

re = GeoRelationExtractor.pretrained("visual_re_geo_v2", "en", "clinical/ocr/") \
    .setInputCols(("features1", "entities", "image")) \
    .setLabels(( "other", "b-header", "i-header", "b-question", "b-question", "b-answer", "i-answer")) \
    .setOutputCol("relations") \
    .setOutputFormat(RelationOutputFormat.ANNOTATIONS)

pipeline = PipelineModel(stages=[
    binary_to_image,
    ocr,
    tokenizer,
    hocr_to_features,
    ner,
    hocr_to_features1,
    re,
    draw_annotations
])

img_path = '/content/imgs/'
img_example_df = spark.read.format("binaryFile").load(img_path).cache()

result = pipeline.transform(img_example_df)

val binary_to_image = new BinaryToImage()
    .setImageType(ImageType.TYPE_3BYTE_BGR)

val ocr = new ImageToHocr()
    .setInputCol("image") 
    .setOutputCol("hocr") 
    .setIgnoreResolution(False) 
    .setOcrParams(Array("preserve_interword_spaces=0")) 
    .setPageSegMode(PageSegmentationMode.SPARSE_TEXT)

val tokenizer = new BrosHocrTokenizer.pretrained("bros_hocr_tokenizer", "en", "clinical/ocr/") 
    .setInputCol("hocr") 
    .setOutputCol("tokens")

val hocr_to_features = new HocrToFeatures() 
    .setInputCols(Array("tokens", "image")) 
    .setOutputCol("features")

val ner = new VisualDocumentNerGeo().pretrained("visual_ner_geo_v1", "en", "clinical/ocr/") 
    .setInputCols(Array("features", "tokens", "image")) 
    .setWhiteList(Array("other", "i-header", "b-header", "i-question", "b-question", "i-answer", "b-answer")) 
    .setLabels(Array("other", "i-header", "b-header", "i-question", "b-question", "i-answer", "b-answer")) 
    .setOutputCol("entities")

val draw_annotations = new ImageDrawAnnotations() 
    .setInputCol("image") 
    .setInputChunksCol("entities") 
    .setOutputCol("image_with_annotations") 
    .setFilledRect(False)

val hocr_to_features1 = new HocrToFeatures() 
    .setInputCols(Array("entities", "image")) 
    .setOutputCol("features1")

val re = new GeoRelationExtractor.pretrained("visual_re_geo_v1", "en", "clinical/ocr/") 
    .setInputCols(("features1", "entities", "image")) 
    .setLabels(("other", "b-header", "i-header", "b-question", "b-question", "b-answer", "i-answer")) 
    .setOutputCol("relations") 
    .setOutputFormat(RelationOutputFormat.ANNOTATIONS)

val pipeline = new PipelineModel().setStages(Array(
    binary_to_image,
    ocr,
    tokenizer,
    hocr_to_features,
    ner,
    hocr_to_features1,
    re,
    draw_annotations))

val img_path = "/content/imgs/"
val img_example_df = spark.read.format("binaryFile").load(img_path).cache()

val result = pipeline.transform(img_example_df)

Example

Input:

Screenshot

Output:

Image with annotations: Screenshot

Result:

+-------------------------------+-----------------+--------------+------------------+--------------+
|result                         |text1            |bbox1         |text2             |bbox2         |
+-------------------------------+-----------------+--------------+------------------+--------------+
|Version: -> 11                 |Version:         |1027 89 90 19 |11                |1132 89 21 19 |
|Study ID: -> 56                |Study ID:        |1020 128 97 23|56                |1131 128 23 19|
|Name: -> Dribbler, aaa bbb     |Name:            |58 478 69 19  |Dribbler, aaa bbb |143 478 187 22|
|Study Date: -> 12-09-2006, 6:34|Study Date:      |431 478 122 23|12-09-2006, 6:34  |568 478 178 22|
|BP: -> 120 / 80 mmHg           |BP:              |790 478 30 19 |120 / 80 mmHg     |835 474 165 31|
|MRN: -> 12341820060912         |MRN:             |58 547 57 19  |12341820060912    |130 547 171 19|
|Patient Location: -> ROOM1     |Patient Location:|432 547 178 19|ROOM1             |626 547 77 19 |
|Patient Location: -> 100 bpm   |Patient Location:|432 547 178 19|100 bpm           |840 547 91 23 |
|DOB: -> 19-06-1979 (DD-MM-     |DOB:             |58 586 49 19  |19-06-1979 (DD-MM-|122 586 239 23|
|Gender: -> Male                |Gender:          |431 586 84 19 |Male              |530 586 51 19 |
|Height: -> 123 cm              |Height:          |790 586 75 23 |123 cm            |880 586 76 19 |
|Age: -> 27 Years               |Age:             |56 655 46 23  |27 Years          |117 655 90 19 |
|Reason For Study: -> MI        |Reason For Study:|58 697 195 23 |MI                |268 697 28 19 |
+-------------------------------+-----------------+--------------+------------------+--------------+

Model Information

Model Name: visual_re_geo_v1
Type: ocr
Compatibility: Visual NLP 5.4.1+
License: Licensed
Edition: Official
Language: en