Clinical Deidentification Pipeline Optimized Version (English - Subentity)

Description

This pipeline can be used to deidentify PHI information from medical texts. The PHI information will be obfuscated in the resulting text and also masked with entitiy labels in the metadata. The pipeline can obfuscate and mask MEDICALRECORD, ORGANIZATION, PROFESSION, HEALTHPLAN, DOCTOR, USERNAME, URL, LOCATION-OTHER, DEVICE, CITY, DATE, ZIP, STATE, PATIENT, COUNTRY, STREET, PHONE, HOSPITAL, EMAIL, IDNUM, BIOID, FAX, AGE, SSN, ACCOUNT, DLN, PLATE, VIN, LICENSE entities. This pipeline is built using the ner_deid_subentity_augmented model as well as ContextualParser, RegexMatcher, and TextMatcher and a single Deidentification stage for optimization.

Predicted Entities

MEDICALRECORD, ORGANIZATION, PROFESSION, HEALTHPLAN, DOCTOR, USERNAME, URL, LOCATION-OTHER, DEVICE, CITY, DATE, ZIP, STATE, PATIENT, COUNTRY, STREET, PHONE, HOSPITAL, EMAIL, IDNUM, BIOID, FAX, AGE, SSN, ACCOUNT, DLN, PLATE, VIN, LICENSE

Copy S3 URI

How to use

from sparknlp.pretrained import PretrainedPipeline

deid_pipeline = PretrainedPipeline("clinical_deidentification_subentity_optimized", "en", "clinical/models")

text = """Name : Hendrickson, Ora, Record date: 2093-01-13, MR: 719435.
Dr. John Green, ID: 1231511863, IP 203.120.223.13.
He is a 60-year-old male was admitted to the Cocke Baptist Hospital for cystectomy on 01/13/93.
Patient's VIN : 1HGBH41JXMN109286, SSN #333-44-6666, Driver's license no: A334455B.
Phone (302) 786-5227, 0295 Keats Street, San Francisco, E-MAIL: smith@gmail.com."""

deid_result = deid_pipeline.fullAnnotate(text)

print('\n'.join([i.metadata['masked'] for i in deid_result[0]['obfuscated']]))
print('\n'.join([i.result for i in deid_result[0]['obfuscated']]))
import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline

val deid_pipeline = PretrainedPipeline("clinical_deidentification_subentity_optimized", "en", "clinical/models")

val text = """Name : Hendrickson, Ora, Record date: 2093-01-13, MR: 719435.
Dr. John Green, ID: 1231511863, IP 203.120.223.13.
He is a 60-year-old male was admitted to the Cocke Baptist Hospital for cystectomy on 01/13/93.
Patient's VIN : 1HGBH41JXMN109286, SSN #333-44-6666, Driver's license no: A334455B.
Phone (302) 786-5227, 0295 Keats Street, San Francisco, E-MAIL: smith@gmail.com."""

val result = deid_pipeline.fullAnnotate(text)

println(deid_result(0)("obfuscated").map(_("metadata")("masked").toString).mkString("
"))
println(deid_result(0)("obfuscated").map(_("result").toString).mkString("
"))

Results

Masked with entity labels
------------------------------
Name : <PATIENT>, Record date: <DATE>, MR: <MEDICALRECORD>.
Dr. <DOCTOR>, ID<IDNUM>, IP <IPADDR>.
He is a <AGE>-year-old male was admitted to the <HOSPITAL> for cystectomy on <DATE>.
Patient's VIN : <VIN>, SSN <SSN>, Driver's license no: <DLN>.
Phone <PHONE>, <STREET>, <CITY>, E-MAIL: <EMAIL>.

Obfuscated
------------------------------
Name : Lenor Coffin, Record date: 2093-03-13, MR: 427062.
Dr. Otila Kluver, ID: 3762831517, IP 444.444.444.444.
He is a 78-year-old male was admitted to the NOLAND HOSPITAL ANNISTON for cystectomy on 03/13/93.
Patient's VIN : 6HYWV37TGGY694854, SSN #627-03-5009, Driver's license no: F818299B.
Phone (716) 967-8938, 615 Ridge Rd, Edinburg, E-MAIL: Ascanius@yahoo.com.

Model Information

Model Name: clinical_deidentification_subentity_optimized
Type: pipeline
Compatibility: Healthcare NLP 5.3.0+
License: Licensed
Edition: Official
Language: en
Size: 1.7 GB

Included Models

  • DocumentAssembler
  • SentenceDetectorDLModel
  • TokenizerModel
  • WordEmbeddingsModel
  • MedicalNerModel
  • NerConverter
  • ContextualParserModel
  • ContextualParserModel
  • ContextualParserModel
  • ContextualParserModel
  • ContextualParserModel
  • ContextualParserModel
  • TextMatcherInternalModel
  • ContextualParserModel
  • RegexMatcherModel
  • ContextualParserModel
  • ContextualParserModel
  • ContextualParserModel
  • ContextualParserModel
  • ChunkMergeModel
  • ChunkMergeModel
  • DeIdentificationModel
  • Finisher