Clinical Deidentification Pipeline Optimized Version (English - Generic)

Description

This pipeline can be used to de-identify PHI information from medical texts. The PHI information will be obfuscated in the resulting text and masked with entity labels in the metadata. The pipeline can obfuscate and mask LOCATION, CONTACT, PROFESSION, NAME, DATE, ID, AGE, COUNTRY, SSN, ACCOUNT, DLN, PLATE, VIN, LICENSE, PHONE, ZIP, MEDICALRECORD, EMAIL entities. This pipeline is built using the ner_deid_generic_augmented model, and ContextualParser, RegexMatcher, and TextMatcher and a single Deidentification stage for optimization.

Predicted Entities

LOCATION, CONTACT, PROFESSION, NAME, DATE, ID, AGE, COUNTRY, SSN, ACCOUNT, DLN, PLATE, VIN, LICENSE, PHONE, ZIP, MEDICALRECORD, EMAIL

Copy S3 URI

How to use

from sparknlp.pretrained import PretrainedPipeline

deid_pipeline = PretrainedPipeline("clinical_deidentification_generic_optimized", "en", "clinical/models")

text = """Name : Hendrickson, Ora, Record date: 2093-01-13, MR #719435.
Dr. John Green, ID: 1231511863, IP 203.120.223.13.
He is a 60-year-old male was admitted to the Day Hospital for cystectomy on 01/13/93.
Patient's VIN : 1HGBH41JXMN109286, SSN #333-44-6666, Driver's license no: A334455B.
Phone (302) 786-5227, 0295 Keats Street, San Francisco, E-MAIL: smith@gmail.com."""

deid_result = deid_pipeline.fullAnnotate(text)

print('\n'.join([i.metadata['masked'] for i in deid_result[0]['obfuscated']]))
print('\n'.join([i.result for i in deid_result[0]['obfuscated']]))
import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline

val deid_pipeline = PretrainedPipeline("clinical_deidentification_generic_optimized", "en", "clinical/models")

val text = """Name : Hendrickson, Ora, Record date: 2093-01-13, MR #719435.
Dr. John Green, ID: 1231511863, IP 203.120.223.13.
He is a 60-year-old male was admitted to the Day Hospital for cystectomy on 01/13/93.
Patient's VIN : 1HGBH41JXMN109286, SSN #333-44-6666, Driver's license no: A334455B.
Phone (302) 786-5227, 0295 Keats Street, San Francisco, E-MAIL: smith@gmail.com."""

val deid_result = deid_pipeline.fullAnnotate(text)

println(deid_result(0)("obfuscated").map(_("metadata")("masked").toString).mkString("\n"))
println(deid_result(0)("obfuscated").map(_("result").toString).mkString("\n"))

Results

Masked with entity labels
------------------------------
Name : <NAME>, Record date: <DATE>, MR <ID>.
Dr. <NAME>, ID: <ID>, IP <IPADDR>.
He is a <AGE>-year-old male was admitted to the <LOCATION> for cystectomy on <DATE>.
Patient's VIN : <VIN>, SSN <SSN>, Driver's license no: <DLN>.
Phone <PHONE>, <LOCATION>, <LOCATION>, E-MAIL: <EMAIL>.

Obfuscated
------------------------------
Name : Loleta Chance, Record date: 2093-02-14, MR #161096.
Dr. Vevelyn Pat, ID: 0454098119, IP 444.444.444.444.
He is a 70-year-old male was admitted to the 34 Maple St for cystectomy on 02/14/93.
Patient's VIN : 1YNWG95AOZH086578, SSN #469-62-9528, Driver's license no: U132440N.
Phone (027) 253-6644, 600 Elizabeth Street,Third Floor, 3500 East Frank Phillips Boulevard, E-MAIL: Ottilie@google.com.

Model Information

Model Name: clinical_deidentification_generic_optimized
Type: pipeline
Compatibility: Healthcare NLP 5.3.0+
License: Licensed
Edition: Official
Language: en
Size: 1.7 GB

Included Models

  • DocumentAssembler
  • SentenceDetectorDLModel
  • TokenizerModel
  • WordEmbeddingsModel
  • MedicalNerModel
  • NerConverter
  • ContextualParserModel
  • ContextualParserModel
  • ContextualParserModel
  • ContextualParserModel
  • ContextualParserModel
  • ContextualParserModel
  • TextMatcherInternalModel
  • ContextualParserModel
  • RegexMatcherModel
  • ContextualParserModel
  • ContextualParserModel
  • ContextualParserModel
  • ContextualParserModel
  • ChunkMergeModel
  • ChunkMergeModel
  • DeIdentificationModel
  • Finisher