Description
This model is a legal version of the BGE base model fine-tuned on in-house curated datasets. Reference: Xiao, S., Liu, Z., Zhang, P., & Muennighof, N. (2023). C-pack: Packaged resources to advance general chinese embedding. arXiv preprint arXiv:2309.07597.
Predicted Entities
How to use
documentAssembler = nlp.DocumentAssembler() \
.setInputCol("text") \
.setOutputCol("document")
tokenizer = nlp.Tokenizer() \
.setInputCols("document") \
.setOutputCol("token")
bge = nlp.BertEmbeddings.pretrained("finembeddings_bge_base", "en", "finance/models")\
.setInputCols(["document", "token"])\
.setOutputCol("bge")
pipeline = nlp.Pipeline(
stages = [
documentAssembler,
tokenizer,
bge
])
data = spark.createDataFrame([['
''What is the best way to invest in the stock market?'''
]]).toDF("text")
result = pipeline.fit(data).transform(data)
.selectExpr("explode(bge.embeddings) as bge_embeddings").show(truncate=100)
Results
+----------------------------------------------------------------------------------------------------+
| bge_embeddings|
+----------------------------------------------------------------------------------------------------+
|[0.70071065, 0.8154926, 0.3667199, 0.49541458, 0.5675478, 0.47981235, 0.09903594, 1.0118086, -0.3...|
|[0.5844246, 0.897823, 0.36319774, 0.33672202, 0.6926622, 0.62645215, 0.21583402, 0.99781555, -0.0...|
|[0.5678047, 0.9290247, 0.19549623, 0.29991657, 0.6558282, 0.60267514, 0.2365676, 0.87947553, -0.1...|
|[0.31799358, 0.60279167, 0.7648379, 0.2832115, 0.45711696, 0.12192034, -0.10309678, 1.1410849, -0...|
|[1.0170714, 1.1024956, 0.59346, 0.4784618, 0.81034416, 0.2503267, -0.02142908, 0.6190611, -0.1401...|
|[0.8248961, 1.1220868, 0.27929437, 0.20173876, 0.6809691, 0.6311508, 0.15206291, 0.8089775, 0.317...|
|[0.76785743, 0.9963818, 0.21050292, 0.2416854, 1.0152707, 0.18767616, 0.27576423, 0.85077125, 0.3...|
|[0.654324, 1.1681782, 0.17568657, 0.23243408, 0.76372075, 0.6539263, 0.2841307, 1.224574, 0.21359...|
|[0.5922923, 1.2471354, 0.090304464, 0.48645073, 0.59852546, 0.8716394, 0.34509993, 0.9442089, 0.1...|
|[0.72195786, 0.9363174, 0.06630206, 0.27642763, 0.7145356, 0.23325293, 0.12738094, 1.0298125, -0....|
|[0.45599157, 0.9871535, 0.15671916, 0.17181304, 0.93662477, 0.27518728, -0.18060194, 0.93082047, ...|
|[0.6865296, 1.052128, 0.2681757, 0.32934788, 0.47195143, 0.81678694, 0.012849957, 1.0271766, -0.0...|
+----------------------------------------------------------------------------------------------------+
Model Information
Model Name: | finembeddings_bge_base |
Compatibility: | Finance NLP 1.0.0+ |
License: | Licensed |
Edition: | Official |
Input Labels: | [sentence, token] |
Output Labels: | [bge_embeddings] |
Language: | en |
Size: | 397.2 MB |
Case sensitive: | false |
References
In-house curated financial datasets.