Extract Anatomical Entities from Oncology Texts (langtest)

Description

This model extracts anatomical entities using an unspecific label. It is the version of ner_oncology_anatomy_general model augmented with langtest library.

Definitions of Predicted Entities:

  • Anatomical_Site: Relevant anatomical terms mentioned in the text.
  • Direction: Directional and laterality terms, such as “left”, “right”, “bilateral”, “upper” and “lower”.

Predicted Entities

Anatomical_Site, Direction

Copy S3 URI

How to use


document_assembler = DocumentAssembler()\
    .setInputCol("text")\
    .setOutputCol("document")

sentence_detector = SentenceDetectorDLModel.pretrained("sentence_detector_dl_healthcare","en","clinical/models")\
    .setInputCols(["document"])\
    .setOutputCol("sentence")

tokenizer = Tokenizer() \
    .setInputCols(["sentence"]) \
    .setOutputCol("token")

word_embeddings = WordEmbeddingsModel().pretrained("embeddings_clinical", "en", "clinical/models")\
    .setInputCols(["sentence", "token"]) \
    .setOutputCol("embeddings")                

ner = MedicalNerModel.pretrained("ner_oncology_anatomy_general_langtest", "en", "clinical/models") \
    .setInputCols(["sentence", "token", "embeddings"]) \
    .setOutputCol("ner")

ner_converter = NerConverter() \
    .setInputCols(["sentence", "token", "ner"]) \
    .setOutputCol("ner_chunk")

pipeline = Pipeline(stages=[document_assembler,
                            sentence_detector,
                            tokenizer,
                            word_embeddings,
                            ner,
                            ner_converter])

data = spark.createDataFrame([["The patient presented a mass in her left breast, and a possible metastasis in her lungs and in her liver."]]).toDF("text")

result = pipeline.fit(data).transform(data)
val document_assembler = new DocumentAssembler()
    .setInputCol("text")
    .setOutputCol("document")
    
val sentence_detector = SentenceDetectorDLModel.pretrained("sentence_detector_dl_healthcare", "en", "clinical/models")
    .setInputCols("document")
    .setOutputCol("sentence")
    
val tokenizer = new Tokenizer()
    .setInputCols("sentence")
    .setOutputCol("token")
    
val word_embeddings = WordEmbeddingsModel().pretrained("embeddings_clinical", "en", "clinical/models")
    .setInputCols(Array("sentence", "token"))
    .setOutputCol("embeddings")                
    
val ner = MedicalNerModel.pretrained("ner_oncology_anatomy_general_langtest", "en", "clinical/models")
    .setInputCols(Array("sentence", "token", "embeddings"))
    .setOutputCol("ner")
    
val ner_converter = new NerConverter()
    .setInputCols(Array("sentence", "token", "ner"))
    .setOutputCol("ner_chunk")

        
val pipeline = new Pipeline().setStages(Array(document_assembler,
                            sentence_detector,
                            tokenizer,
                            word_embeddings,
                            ner,
                            ner_converter))    

val data = Seq("The patient presented a mass in her left breast, and a possible metastasis in her lungs and in her liver.").toDS.toDF("text")

val result = pipeline.fit(data).transform(data)

Results

+------+---------------+
|chunk |ner_label      |
+------+---------------+
|left  |Direction      |
|breast|Anatomical_Site|
|lungs |Anatomical_Site|
|liver |Anatomical_Site|
+------+---------------+

Model Information

Model Name: ner_oncology_anatomy_general_langtest
Compatibility: Healthcare NLP 5.0.2+
License: Licensed
Edition: Official
Input Labels: [sentence, token, embeddings]
Output Labels: [ner]
Language: en
Size: 14.7 MB

References

In-house annotated oncology case reports.

Benchmarking

label              precision  recall  f1-score  support 
B-Direction        0.89       0.91    0.90      872     
B-Anatomical_Site  0.86       0.88    0.87      2361    
I-Anatomical_Site  0.76       0.86    0.81      1272    
I-Direction        0.79       0.81    0.80      83      
micro-avg          0.84       0.88    0.86      4588    
macro-avg          0.83       0.86    0.84      4588    
weighted-avg       0.84       0.88    0.86      4588