Description
This model extracts anatomical entities using an unspecific label.
Definitions of Predicted Entities:
Anatomical_Site
: Relevant anatomical terms mentioned in text.Direction
: Directional and laterality terms, such as “left”, “right”, “bilateral”, “upper” and “lower”.
Predicted Entities
Anatomical_Site
, Direction
Live Demo Open in Colab Copy S3 URI
How to use
document_assembler = DocumentAssembler()\
.setInputCol("text")\
.setOutputCol("document")
sentence_detector = SentenceDetectorDLModel.pretrained("sentence_detector_dl_healthcare","en","clinical/models")\
.setInputCols(["document"])\
.setOutputCol("sentence")
tokenizer = Tokenizer() \
.setInputCols(["sentence"]) \
.setOutputCol("token")
word_embeddings = WordEmbeddingsModel().pretrained("embeddings_clinical", "en", "clinical/models")\
.setInputCols(["sentence", "token"]) \
.setOutputCol("embeddings")
ner = MedicalNerModel.pretrained("ner_oncology_anatomy_general", "en", "clinical/models") \
.setInputCols(["sentence", "token", "embeddings"]) \
.setOutputCol("ner")
ner_converter = NerConverter() \
.setInputCols(["sentence", "token", "ner"]) \
.setOutputCol("ner_chunk")
pipeline = Pipeline(stages=[document_assembler,
sentence_detector,
tokenizer,
word_embeddings,
ner,
ner_converter])
data = spark.createDataFrame([["The patient presented a mass in her left breast, and a possible metastasis in her lungs and in her liver."]]).toDF("text")
result = pipeline.fit(data).transform(data)
val document_assembler = new DocumentAssembler()
.setInputCol("text")
.setOutputCol("document")
val sentence_detector = SentenceDetectorDLModel.pretrained("sentence_detector_dl_healthcare","en","clinical/models")
.setInputCols("document")
.setOutputCol("sentence")
val tokenizer = new Tokenizer()
.setInputCols("sentence")
.setOutputCol("token")
val word_embeddings = WordEmbeddingsModel().pretrained("embeddings_clinical", "en", "clinical/models")
.setInputCols(Array("sentence", "token"))
.setOutputCol("embeddings")
val ner = MedicalNerModel.pretrained("ner_oncology_anatomy_general", "en", "clinical/models")
.setInputCols(Array("sentence", "token", "embeddings"))
.setOutputCol("ner")
val ner_converter = new NerConverter()
.setInputCols(Array("sentence", "token", "ner"))
.setOutputCol("ner_chunk")
val pipeline = new Pipeline().setStages(Array(document_assembler,
sentence_detector,
tokenizer,
word_embeddings,
ner,
ner_converter))
val data = Seq("The patient presented a mass in her left breast, and a possible metastasis in her lungs and in her liver.").toDS.toDF("text")
val result = pipeline.fit(data).transform(data)
import nlu
nlu.load("en.med_ner.anatomy_general").predict("""The patient presented a mass in her left breast, and a possible metastasis in her lungs and in her liver.""")
Results
| chunk | ner_label |
|:--------|:----------------|
| left | Direction |
| breast | Anatomical_Site |
| lungs | Anatomical_Site |
| liver | Anatomical_Site |
Model Information
Model Name: | ner_oncology_anatomy_general |
Compatibility: | Healthcare NLP 4.2.2+ |
License: | Licensed |
Edition: | Official |
Input Labels: | [sentence, token, embeddings] |
Output Labels: | [ner] |
Language: | en |
Size: | 34.3 MB |
References
In-house annotated oncology case reports.
Benchmarking
label tp fp fn total precision recall f1
Anatomical_Site 2946 549 638 3584 0.84 0.82 0.83
Direction 864 209 120 984 0.81 0.88 0.84
macro_avg 3810 758 758 4568 0.82 0.85 0.84
micro_avg 3810 758 758 4568 0.83 0.83 0.83