Medical Spell Checker Pipeline

Description

This pretrained medical spellchecker pipeline is built on the top of spellcheck_clinical model. This pipeline is for PySpark 2.4.x users with SparkNLP 3.4.2 and above.

Predicted Entities

Copy S3 URI

How to use

from sparknlp.pretrained import PretrainedPipeline

pipeline = PretrainedPipeline("spellcheck_clinical_pipeline", "en", "clinical/models")
example = ["Witth the hell of phisical terapy the patient was imbulated and on postoperative, the impatient tolerating a post curgical soft diet.",
           "With paint wel controlled on orall pain medications, she was discharged too reihabilitation facilitay.",
           "Abdomen is sort, nontender, and nonintended.",
           "Patient not showing pain or any wealth problems.",
           "No cute distress"]
pipeline.fullAnnotate(example)
import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline

val pipeline = new PretrainedPipeline("spellcheck_clinical_pipeline", "en", "clinical/models")
val example = Array("Witth the hell of phisical terapy the patient was imbulated and on postoperative, the impatient tolerating a post curgical soft diet.",
           "With paint wel controlled on orall pain medications, she was discharged too reihabilitation facilitay.",
           "Abdomen is sort, nontender, and nonintended.",
           "Patient not showing pain or any wealth problems.",
           "No cute distress")
pipeline.fullAnnotate(example)
import nlu
nlu.load("en.spell.clinical.pipeline").predict("""Witth the hell of phisical terapy the patient was imbulated and on postoperative, the impatient tolerating a post curgical soft diet.""")

Results

[{'checked': ['With','the','cell','of','physical','therapy','the','patient','was','ambulated','and','on','postoperative',',','the','patient','tolerating','a','post','surgical','soft','diet','.'],
  'document': ['Witth the hell of phisical terapy the patient was imbulated and on postoperative, the impatient tolerating a post curgical soft diet.'],
  'token': ['Witth','the','hell','of','phisical','terapy','the','patient','was','imbulated','and','on','postoperative',',','the','impatient','tolerating','a','post','curgical','soft','diet','.']},
 
 {'checked': ['With','pain','well','controlled','on','oral','pain','medications',',','she','was','discharged','to','rehabilitation','facility','.'],
  'document': ['With paint wel controlled on orall pain medications, she was discharged too reihabilitation facilitay.'],
  'token': ['With','paint','wel','controlled','on','orall','pain','medications',',','she','was','discharged','too','reihabilitation','facilitay','.']},
 
 {'checked': ['Abdomen','is','soft',',','nontender',',','and','nondistended','.'],
  'document': ['Abdomen is sort, nontender, and nonintended.'],
  'token': ['Abdomen','is','sort',',','nontender',',','and','nonintended','.']},
 
 {'checked': ['Patient','not','showing','pain','or','any','health','problems','.'],
  'document': ['Patient not showing pain or any wealth problems.'],
  'token': ['Patient','not','showing','pain','or','any','wealth','problems','.']},
 
 {'checked': ['No', 'acute', 'distress'],
  'document': ['No cute distress'],
  'token': ['No', 'cute', 'distress']}]

Model Information

Model Name: spellcheck_clinical_pipeline
Type: pipeline
Compatibility: Healthcare NLP 4.4.4+
License: Licensed
Edition: Official
Language: en
Size: 141.3 MB

Included Models

  • DocumentAssembler
  • TokenizerModel
  • ContextSpellCheckerModel