Description
This pretrained pipeline is built on the top of snomed_umls_mapper model.
Predicted Entities
Available as Private API Endpoint
How to use
from sparknlp.pretrained import PretrainedPipeline
pipeline = PretrainedPipeline("snomed_umls_mapping", "en", "clinical/models")
result = pipeline.fullAnnotate(["733187009", "449433008", "51264003"])
import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
val pipeline = new PretrainedPipeline("snomed_umls_mapping", "en", "clinical/models")
val result = pipeline.fullAnnotate(["733187009", "449433008", "51264003"])
import nlu
nlu.load("en.snomed.umls.mapping").predict("""Put your text here.""")
Results
|   | snomed_code | umls_code |
|--:|------------:|----------:|
| 0 |   733187009 |  C4546029 |
| 1 |   449433008 |  C3164619 |
| 2 |    51264003 |  C0271267 |
Model Information
| Model Name: | snomed_umls_mapping | 
| Type: | pipeline | 
| Compatibility: | Healthcare NLP 4.4.4+ | 
| License: | Licensed | 
| Edition: | Official | 
| Language: | en | 
| Size: | 5.1 MB | 
Included Models
- DocumentAssembler
- TokenizerModel
- ChunkMapperModel