Pipeline to Extract Pharmacological Entities from Spanish Medical Texts

Description

This pretrained pipeline is built on the top of ner_pharmacology model.

Predicted Entities

Copy S3 URI

How to use

from sparknlp.pretrained import PretrainedPipeline

pipeline = PretrainedPipeline("ner_pharmacology_pipeline", "es", "clinical/models")

text = '''e realiza analítica destacando creatinkinasa 736 UI, LDH 545 UI, urea 63 mg/dl, CA 19.9 64,1 U/ml. Inmunofenotípicamente el tumor expresó vimentina, S-100, HMB-45 y actina. Se instauró el tratamiento con quimioterapia (Cisplatino, Interleukina II, Dacarbacina e Interferon alfa).'''

result = pipeline.fullAnnotate(text)
import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline

val pipeline = new PretrainedPipeline("ner_pharmacology_pipeline", "es", "clinical/models")

val text = "e realiza analítica destacando creatinkinasa 736 UI, LDH 545 UI, urea 63 mg/dl, CA 19.9 64,1 U/ml. Inmunofenotípicamente el tumor expresó vimentina, S-100, HMB-45 y actina. Se instauró el tratamiento con quimioterapia (Cisplatino, Interleukina II, Dacarbacina e Interferon alfa)."

val result = pipeline.fullAnnotate(text)
from sparknlp.pretrained import PretrainedPipeline

pipeline = PretrainedPipeline("ner_pharmacology_pipeline", "es", "clinical/models")

text = '''e realiza analítica destacando creatinkinasa 736 UI, LDH 545 UI, urea 63 mg/dl, CA 19.9 64,1 U/ml. Inmunofenotípicamente el tumor expresó vimentina, S-100, HMB-45 y actina. Se instauró el tratamiento con quimioterapia (Cisplatino, Interleukina II, Dacarbacina e Interferon alfa).'''

result = pipeline.fullAnnotate(text)

Results

|    | ner_chunks      |   begin |   end | ner_label     |   confidence |
|---:|:----------------|--------:|------:|:--------------|-------------:|
|  0 | creatinkinasa   |      31 |    43 | PROTEINAS     |      0.9994  |
|  1 | LDH             |      53 |    55 | PROTEINAS     |      0.9996  |
|  2 | urea            |      65 |    68 | NORMALIZABLES |      0.9996  |
|  3 | CA 19.9         |      80 |    86 | PROTEINAS     |      0.99835 |
|  4 | vimentina       |     138 |   146 | PROTEINAS     |      0.9991  |
|  5 | S-100           |     149 |   153 | PROTEINAS     |      0.9996  |
|  6 | HMB-45          |     156 |   161 | PROTEINAS     |      0.9986  |
|  7 | actina          |     165 |   170 | PROTEINAS     |      0.9998  |
|  8 | Cisplatino      |     219 |   228 | NORMALIZABLES |      0.9999  |
|  9 | Interleukina II |     231 |   245 | PROTEINAS     |      0.99955 |
| 10 | Dacarbacina     |     248 |   258 | NORMALIZABLES |      0.9996  |
| 11 | Interferon alfa |     262 |   276 | PROTEINAS     |      0.99935 |

Model Information

Model Name: ner_pharmacology_pipeline
Type: pipeline
Compatibility: Healthcare NLP 4.4.4+
License: Licensed
Edition: Official
Language: es
Size: 318.8 MB

Included Models

  • DocumentAssembler
  • SentenceDetectorDLModel
  • TokenizerModel
  • RoBertaEmbeddings
  • MedicalNerModel
  • NerConverter