Description
This Named Entity Recognition model is intended for detecting pharmacological entities from Spanish medical texts and trained by using MedicalNerApproach annotator that allows to train generic NER models based on Neural Networks.. The model detects PROTEINAS and NORMALIZABLES.
Predicted Entities
PROTEINAS
, NORMALIZABLES
How to use
document_assembler = DocumentAssembler()\
.setInputCol("text")\
.setOutputCol("document")
sentenceDetectorDL = SentenceDetectorDLModel.pretrained("sentence_detector_dl", "xx")\
.setInputCols(["document"])\
.setOutputCol("sentence")
tokenizer = Tokenizer()\
.setInputCols(["sentence"])\
.setOutputCol("token")
word_embeddings = RoBertaEmbeddings.pretrained("roberta_base_biomedical", "es")\
.setInputCols(["sentence","token"])\
.setOutputCol("embeddings")
ner = MedicalNerModel.pretrained('ner_pharmacology', "es", "clinical/models") \
.setInputCols(["sentence", "token", "embeddings"]) \
.setOutputCol("ner")
ner_converter = NerConverter()\
.setInputCols(["sentence", "token", "ner"])\
.setOutputCol("ner_chunk")
pipeline = Pipeline(stages=[
document_assembler,
sentenceDetectorDL,
tokenizer,
word_embeddings,
ner,
ner_converter])
data = spark.createDataFrame([["""Se realiza analítica destacando creatinkinasa 736 UI, LDH 545 UI, urea 63 mg/dl, CA 19.9 64,1 U/ml. Inmunofenotípicamente el tumor expresó vimentina, S-100, HMB-45 y actina. Se instauró el tratamiento con quimioterapia (Cisplatino, Interleukina II, Dacarbacina e Interferon alfa)."""]]).toDF("text")
result = pipeline.fit(data).transform(data)
val documenter = new DocumentAssembler()
.setInputCol("text")
.setOutputCol("document")
val sentenceDetector = SentenceDetectorDLModel.pretrained()
.setInputCols("document")
.setOutputCol("sentence")
val tokenizer = new Tokenizer()
.setInputCols("sentence")
.setOutputCol("token")
val word_embeddings = RoBertaEmbeddings.pretrained("roberta_base_biomedical", "es")
.setInputCols(Array("sentence","token"))
.setOutputCol("embeddings")
val ner_model = MedicalNerModel.pretrained("ner_pharmacology", "es", "clinical/models")
.setInputCols(Array("sentence", "token", "embeddings"))
.setOutputCol("ner")
val ner_converter = new NerConverter()
.setInputCols(Array("sentence", "token", "ner"))
.setOutputCol("ner_chunk")
val pipeline = new Pipeline().setStages(Array(documenter, sentenceDetector, tokenizer, word_embeddings, ner_model, ner_converter))
val data = Seq(Array("""Se realiza analítica destacando creatinkinasa 736 UI, LDH 545 UI, urea 63 mg/dl, CA 19.9 64,1 U/ml. Inmunofenotípicamente el tumor expresó vimentina, S-100, HMB-45 y actina. Se instauró el tratamiento con quimioterapia (Cisplatino, Interleukina II, Dacarbacina e Interferon alfa).""")).toDS().toDF("text")
val result = pipeline.fit(data).transform(data)
import nlu
nlu.load("es.med_ner.pharmacology").predict("""Se realiza analítica destacando creatinkinasa 736 UI, LDH 545 UI, urea 63 mg/dl, CA 19.9 64,1 U/ml. Inmunofenotípicamente el tumor expresó vimentina, S-100, HMB-45 y actina. Se instauró el tratamiento con quimioterapia (Cisplatino, Interleukina II, Dacarbacina e Interferon alfa).""")
Results
+---------------+-------------+
|chunk |ner_label |
+---------------+-------------+
|creatinkinasa |PROTEINAS |
|LDH |PROTEINAS |
|urea |NORMALIZABLES|
|CA 19.9 |PROTEINAS |
|vimentina |PROTEINAS |
|S-100 |PROTEINAS |
|HMB-45 |PROTEINAS |
|actina |PROTEINAS |
|Cisplatino |NORMALIZABLES|
|Interleukina II|PROTEINAS |
|Dacarbacina |NORMALIZABLES|
|Interferon alfa|PROTEINAS |
+---------------+-------------+
Model Information
Model Name: | ner_pharmacology |
Compatibility: | Healthcare NLP 4.0.2+ |
License: | Licensed |
Edition: | Official |
Input Labels: | [sentence, token, embeddings] |
Output Labels: | [ner] |
Language: | es |
Size: | 16.3 MB |
References
The model is prepared using the reference paper: “NLP applied to occupational health: MEDDOPROF shared task at IberLEF 2021 on automatic recognition, classification and normalization of professions and occupations from medical texts”, Salvador Lima-Lopez, Eulalia Farr ́e-Maduell, Antonio Miranda-Escalada, Vicent Briva-Iglesias and Martin Krallinger. Procesamiento del Lenguaje Natural, Revista nº 67, septiembre de 2021, pp. 243-256.
Benchmarking
label precision recall f1-score support
B-PROTEINAS 0.88 0.93 0.90 813
I-PROTEINAS 0.83 0.71 0.77 321
B-NORMALIZABLES 0.94 0.93 0.93 954
I-NORMALIZABLES 0.87 0.84 0.86 134
micro-avg 0.90 0.89 0.90 2222
macro-avg 0.88 0.85 0.86 2222
weighted-avg 0.90 0.89 0.89 2222