Pipeline to Detect Drugs and Proteins

Description

This pretrained pipeline is built on the top of ner_drugprot_clinical model.

Predicted Entities

CHEMICAL, GENE, GENE_AND_CHEMICAL

Copy S3 URI

How to use

from sparknlp.pretrained import PretrainedPipeline

pipeline = PretrainedPipeline("ner_drugprot_clinical_pipeline", "en", "clinical/models")

text = '''Anabolic effects of clenbuterol on skeletal muscle are mediated by beta 2-adrenoceptor activation.'''

result = pipeline.fullAnnotate(text)
import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline

val pipeline = new PretrainedPipeline("ner_drugprot_clinical_pipeline", "en", "clinical/models")

val text = "Anabolic effects of clenbuterol on skeletal muscle are mediated by beta 2-adrenoceptor activation."

val result = pipeline.fullAnnotate(text)
import nlu
nlu.load("en.med_ner.clinical_drugprot.pipeline").predict("""Anabolic effects of clenbuterol on skeletal muscle are mediated by beta 2-adrenoceptor activation.""")

Results

|    | ner_chunks          |   begin |   end | ner_label   |   confidence |
|---:|:--------------------|--------:|------:|:------------|-------------:|
|  0 | clenbuterol         |      20 |    30 | CHEMICAL    |      0.9691  |
|  1 | beta 2-adrenoceptor |      67 |    85 | GENE        |      0.89855 |

Model Information

Model Name: ner_drugprot_clinical_pipeline
Type: pipeline
Compatibility: Healthcare NLP 4.4.4+
License: Licensed
Edition: Official
Language: en
Size: 1.7 GB

Included Models

  • DocumentAssembler
  • SentenceDetectorDLModel
  • TokenizerModel
  • WordEmbeddingsModel
  • MedicalNerModel
  • NerConverterInternalModel