Description
This model detects chemical compounds/drugs and genes/proteins in medical text and research articles. Chemical compounds/drugs are labeled as CHEMICAL, genes/proteins are labeled as GENE and entity mentions of type GENE and of type CHEMICAL that overlap such as enzymes and small peptides are labeled as GENE_AND_CHEMICAL.
Predicted Entities
GENE, CHEMICAL, GENE_AND_CHEMICAL
Live Demo Open in Colab Copy S3 URI
How to use
...
document_assembler = DocumentAssembler()\
.setInputCol("text")\
.setOutputCol("document")
sentence_detector = SentenceDetector()\
.setInputCols(["document"])\
.setOutputCol("sentences")
tokenizer = Tokenizer()\
.setInputCols(["sentences"])\
.setOutputCol("tokens")
embeddings_clinical = WordEmbeddingsModel.pretrained("embeddings_clinical", "en", "clinical/models")\
.setInputCols(["sentences", "tokens"])\
.setOutputCol("embeddings")
clinical_ner = MedicalNerModel.pretrained("ner_drugprot_clinical", "en", "clinical/models")\
.setInputCols(["sentences", "tokens", "embeddings"])\
.setOutputCol("ner")
ner_converter = NerConverter()\
.setInputCols(["sentences", "tokens", "ner"])\
.setOutputCol("ner_chunks")
nlpPipeline = Pipeline(stages=[document_assembler, sentence_detector, tokenizer, embeddings_clinical, clinical_ner, ner_converter])
EXAMPLE_TEXT = "Anabolic effects of clenbuterol on skeletal muscle are mediated by beta 2-adrenoceptor activation."
data = spark.createDataFrame([[EXAMPLE_TEXT]]).toDF("text")
results = nlpPipeline.fit(data).transform(data)
...
val document_assembler = new DocumentAssembler() 
.setInputCol("text") 
.setOutputCol("document")
val sentence_detector = new SentenceDetector()
.setInputCols(Array("document"))
.setOutputCol("sentences")
val tokenizer = new Tokenizer()
.setInputCols(Array("sentences"))
.setOutputCol("tokens")
val embeddings_clinical = WordEmbeddingsModel.pretrained("embeddings_clinical", "en", "clinical/models")
.setInputCols(Array("sentences", "tokens"))
.setOutputCol("embeddings")
val clinical_ner = MedicalNerModel.pretrained("ner_drugprot_clinical", "en", "clinical/models")
.setInputCols(Array("sentences", "tokens", "embeddings"))
.setOutputCol("ner")
val ner_converter = new NerConverter()
.setInputCols(Array("sentences", "tokens", "ner"))
.setOutputCol("ner_chunks")
val pipeline = new Pipeline().setStages(Array(document_assembler, sentence_detector, tokenizer, embeddings_clinical, clinical_ner, ner_converter))
val data = Seq("""Anabolic effects of clenbuterol on skeletal muscle are mediated by beta 2-adrenoceptor activation.""").toDS.toDF("text")
val result = pipeline.fit(data).transform(data)
import nlu
nlu.load("en.med_ner.drugprot_clinical").predict("""Anabolic effects of clenbuterol on skeletal muscle are mediated by beta 2-adrenoceptor activation.""")
Results
+-------------------------------+---------+
|chunk                          |ner_label|
+-------------------------------+---------+
|clenbuterol                    |CHEMICAL |
|beta 2-adrenoceptor            |GENE     |
+-------------------------------+---------+
Model Information
| Model Name: | ner_drugprot_clinical | 
| Compatibility: | Healthcare NLP 3.3.4+ | 
| License: | Licensed | 
| Edition: | Official | 
| Input Labels: | [sentence, token, embeddings] | 
| Output Labels: | [ner] | 
| Language: | en | 
| Size: | 14.7 MB | 
| Dependencies: | embeddings_clinical | 
Data Source
This model was trained on the DrugProt corpus.
Benchmarking
label      tp     fp     fn   total  precision  recall   f1
GENE_AND_CHEMICAL   786.0  171.0  143.0   929.0     0.8213  0.8461   0.8335
CHEMICAL  8228.0  779.0  575.0  8803.0     0.9135  0.9347   0.924
GENE  7176.0  822.0  652.0  7828.0     0.8972  0.9167   0.9069
macro      -       -      -       -       -        -     0.88811683
micro      -       -      -       -       -        -     0.91156048