Extract Anatomical Entities from Oncology Texts

Description

This model extracts anatomical entities using an unspecific label.

Predicted Entities

Anatomical_Site, Direction

Live Demo Open in Colab Copy S3 URI

How to use

document_assembler = DocumentAssembler()\
    .setInputCol("text")\
    .setOutputCol("document")

sentence_detector = SentenceDetectorDLModel\
    .pretrained("sentence_detector_dl_healthcare","en","clinical/models")\
    .setInputCols(["document"])\
    .setOutputCol("sentence")

tokenizer = Tokenizer() \
    .setInputCols(["sentence"]) \
    .setOutputCol("token")

word_embeddings = WordEmbeddingsModel()\
    .pretrained("embeddings_healthcare_100d", "en", "clinical/models")\
    .setInputCols(["sentence", "token"]) \
    .setOutputCol("embeddings")   

ner = MedicalNerModel\
    .pretrained("ner_oncology_anatomy_general_healthcare", "en", "clinical/models") \
    .setInputCols(["sentence", "token", "embeddings"]) \
    .setOutputCol("ner")

ner_converter = NerConverterInternal() \
    .setInputCols(["sentence", "token", "ner"]) \
    .setOutputCol("ner_chunk")
        
pipeline = Pipeline(stages=[document_assembler,
                            sentence_detector,
                            tokenizer,
                            word_embeddings,
                            ner,
                            ner_converter])

data = spark.createDataFrame([["The patient presented a mass in her left breast, and a possible metastasis in her lungs and in her liver."]]).toDF("text")

result = pipeline.fit(data).transform(data)
val document_assembler = new DocumentAssembler()
      .setInputCol("text")
      .setOutputCol("document")
    
val sentence_detector = SentenceDetectorDLModel
      .pretrained("sentence_detector_dl_healthcare","en","clinical/models")
      .setInputCols("document")
      .setOutputCol("sentence")
    
val tokenizer = new Tokenizer()
      .setInputCols("sentence")
      .setOutputCol("token")
    
val word_embeddings = WordEmbeddingsModel()
      .pretrained("embeddings_healthcare_100d", "en", "clinical/models")
      .setInputCols(Array("sentence", "token"))
      .setOutputCol("embeddings")                
    
val ner = MedicalNerModel.pretrained("ner_oncology_anatomy_general_healthcare", "en", "clinical/models")
      .setInputCols(Array("sentence", "token", "embeddings"))
      .setOutputCol("ner")

val ner_converter = new NerConverterInternal()
      .setInputCols(Array("sentence", "token", "ner"))
      .setOutputCol("ner_chunk")
        
val pipeline = new Pipeline().setStages(Array(document_assembler,
                            sentence_detector,
                            tokenizer,
                            word_embeddings,
                            ner,
                            ner_converter))    

val data = Seq("The patient presented a mass in her left breast, and a possible metastasis in her lungs and in her liver.").toDS.toDF("text")

val result = pipeline.fit(data).transform(data)
import nlu
nlu.load("en.med_ner.oncology_anatom_general_healthcare").predict("""The patient presented a mass in her left breast, and a possible metastasis in her lungs and in her liver.""")

Results

| chunk   | ner_label       |
|:--------|:----------------|
| left    | Direction       |
| breast  | Anatomical_Site |
| lungs   | Anatomical_Site |
| liver   | Anatomical_Site |

Model Information

Model Name: ner_oncology_anatomy_general_healthcare
Compatibility: Healthcare NLP 4.2.4+
License: Licensed
Edition: Official
Input Labels: [sentence, token, embeddings]
Output Labels: [ner]
Language: en
Size: 34.0 MB

References

In-house annotated oncology case reports.

Benchmarking

          label   tp  fp  fn  total  precision  recall   f1
Anatomical_Site 1439 235 333   1772       0.86    0.81 0.84
      Direction  434  92  65    499       0.83    0.87 0.85
      macro-avg 1873 327 398   2271       0.84    0.84 0.84
      micro-avg 1873 327 398   2271       0.85    0.82 0.84