Key Value Recognition on 10K filings

Description

This model is designed for form recognition and key-value extraction, specifically trained on the summary pages of SEC 10-K filings (annual financial reports). It identifies and extracts structured information by categorizing detected entities into KEY, VALUE, or HEADER.

  • KEY represents the label or descriptor of a data point.
  • VALUE corresponds to the associated information or numerical data linked to the key.
  • HEADER refers to section titles or headings within the filing, providing context for the extracted information. By leveraging both text recognition and document structure analysis, the model ensures accurate extraction of financial and regulatory details, enabling automated processing of structured data. This approach enhances efficiency in document analysis, reducing manual effort while improving consistency and accuracy in financial reporting workflows.

Predicted Entities

KEY, VALUE, HEADER

Live Demo Open in Colab Copy S3 URI

How to use

binary_to_image = BinaryToImage()\
    .setInputCol("content") \
    .setOutputCol("image") \
    .setImageType(ImageType.TYPE_3BYTE_BGR)

img_to_hocr = ImageToHocr()\
    .setInputCol("image")\
    .setOutputCol("hocr")\
    .setIgnoreResolution(False)\
    .setOcrParams(["preserve_interword_spaces=0"])

tokenizer = HocrTokenizer()\
    .setInputCol("hocr")\
    .setOutputCol("token")

doc_ner = VisualDocumentNerV21()\
    .pretrained("visualner_keyvalue_10kfilings", "en", "clinical/ocr")\
    .setInputCols(["token", "image"])\
    .setOutputCol("entities")

draw = ImageDrawAnnotations() \
    .setInputCol("image") \
    .setInputChunksCol("entities") \
    .setOutputCol("image_with_annotations") \
    .setFontSize(10) \
    .setLineWidth(4)\
    .setRectColor(Color.red)

# OCR pipeline
pipeline = PipelineModel(stages=[
    binary_to_image,
    img_to_hocr,
    tokenizer,
    doc_ner,
    draw
])

bin_df = spark.read.format("binaryFile").load('data/t01.jpg')

results = pipeline.transform(bin_df).cache()
res = results.collect()
path_array = f.split(results['path'], '/')

results.withColumn('filename', path_array.getItem(f.size(path_array)- 1)) \
    .withColumn("exploded_entities", f.explode("entities")) \
    .select("filename", "exploded_entities") \
    .show(truncate=False)
val binary_to_image = new BinaryToImage()
    .setInputCol("content") 
    .setOutputCol("image") 
    .setImageType(ImageType.TYPE_3BYTE_BGR)

val img_to_hocr = new ImageToHocr()
    .setInputCol("image")
    .setOutputCol("hocr")
    .setIgnoreResolution(False)
    .setOcrParams(Array("preserve_interword_spaces=0"))

val tokenizer = new HocrTokenizer()
    .setInputCol("hocr")
    .setOutputCol("token")

val doc_ner = VisualDocumentNerV21()
    .pretrained("visualner_keyvalue_10kfilings", "en", "clinical/ocr")
    .setInputCols(Array("token", "image"))
    .setOutputCol("entities")

val draw = new ImageDrawAnnotations() 
    .setInputCol("image") 
    .setInputChunksCol("entities") 
    .setOutputCol("image_with_annotations") 
    .setFontSize(10) 
    .setLineWidth(4)
    .setRectColor(Color.red)

# OCR pipeline
val pipeline = new PipelineModel().setStages(Array(
    binary_to_image, 
    img_to_hocr, 
    tokenizer, 
    doc_ner, 
    draw))

val bin_df = spark.read.format("binaryFile").load('data/t01.jpg')

val results = pipeline.transform(bin_df).cache()
val res = results.collect()
val path_array = f.split(results["path"], "/")

val results.withColumn("filename", path_array.getItem(f.size(path_array)- 1)) 
    .withColumn(Array("exploded_entities", f.explode("entities"))) 
    .select(Array("filename", "exploded_entities"))
    .show(truncate=False)

Example

Input image

Screenshot

Output image

Screenshot

Output text

+--------+---------------------------------------------------------------------------------------------------------------------------------------------------------+
|filename|exploded_entities                                                                                                                                        |
+--------+---------------------------------------------------------------------------------------------------------------------------------------------------------+
|t01.jpg |{named_entity, 268, 269, OTHERS, {confidence -> 96, width -> 14, x -> 822, y -> 1101, word -> of, token -> of, height -> 34}, []}                        |
|t01.jpg |{named_entity, 271, 273, OTHERS, {confidence -> 89, width -> 33, x -> 837, y -> 1112, word -> the, token -> the, height -> 13}, []}                      |
|t01.jpg |{named_entity, 275, 277, OTHERS, {confidence -> 89, width -> 30, x -> 874, y -> 1113, word -> Act., token -> act, height -> 12}, []}                     |
|t01.jpg |{named_entity, 280, 282, KEY-B, {confidence -> 94, width -> 26, x -> 910, y -> 1113, word -> Yes, token -> yes, height -> 12}, []}                       |
|t01.jpg |{named_entity, 284, 285, VALUE-B, {confidence -> 45, width -> 13, x -> 944, y -> 1112, word -> LI, token -> li, height -> 13}, []}                       |
|t01.jpg |{named_entity, 287, 288, KEY-B, {confidence -> 83, width -> 22, x -> 963, y -> 1113, word -> No, token -> no, height -> 12}, []}                         |
|t01.jpg |{named_entity, 290, 295, HEADER-B, {confidence -> 96, width -> 89, x -> 1493, y -> 13, word -> UNITED, token -> united, height -> 16}, []}               |
|t01.jpg |{named_entity, 297, 302, HEADER-I, {confidence -> 95, width -> 83, x -> 1590, y -> 13, word -> STATES, token -> states, height -> 16}, []}               |
|t01.jpg |{named_entity, 304, 313, HEADER-B, {confidence -> 95, width -> 221, x -> 1186, y -> 45, word -> SECURITIES, token -> securities, height -> 25}, []}      |
|t01.jpg |{named_entity, 315, 317, HEADER-I, {confidence -> 95, width -> 80, x -> 1415, y -> 45, word -> AND, token -> and, height -> 25}, []}                     |
|t01.jpg |{named_entity, 319, 326, HEADER-I, {confidence -> 96, width -> 212, x -> 1507, y -> 45, word -> EXCHANGE, token -> exchange, height -> 25}, []}          |
|t01.jpg |{named_entity, 328, 337, HEADER-I, {confidence -> 95, width -> 249, x -> 1732, y -> 45, word -> COMMISSION, token -> commission, height -> 25}, []}      |
|t01.jpg |{named_entity, 339, 348, HEADER-B, {confidence -> 96, width -> 125, x -> 1461, y -> 86, word -> Washington,, token -> washington, height -> 21}, []}     |
|t01.jpg |{named_entity, 351, 351, HEADER-I, {confidence -> 93, width -> 43, x -> 1595, y -> 86, word -> D.C., token -> d, height -> 16}, []}                      |
|t01.jpg |{named_entity, 356, 360, HEADER-I, {confidence -> 93, width -> 59, x -> 1646, y -> 86, word -> 20549, token -> 20549, height -> 16}, []}                 |
|t01.jpg |{named_entity, 362, 365, HEADER-B, {confidence -> 93, width -> 112, x -> 1484, y -> 159, word -> FORM, token -> form, height -> 25}, []}                 |
|t01.jpg |{named_entity, 367, 368, HEADER-I, {confidence -> 91, width -> 77, x -> 1609, y -> 159, word -> 10-K, token -> 10, height -> 25}, []}                    |
+--------+---------------------------------------------------------------------------------------------------------------------------------------------------------+

Model Information

Model Name: visualner_keyvalue_10kfilings
Type: ocr
Compatibility: Visual NLP 4.0.0+
License: Licensed
Edition: Official
Language: en
Size: 744.3 MB

References

Sec 10K filings