Description
This model extracts entities related to the patient”s response to the oncology treatment, including clinical response and changes in tumor size.
Definitions of Predicted Entities:
Line_Of_Therapy
: Explicit references to the line of therapy of an oncological therapy (e.g. “first-line treatment”).Response_To_Treatment
: Terms related to clinical progress of the patient related to cancer treatment, including “recurrence”, “bad response” or “improvement”.Size_Trend
: Terms related to the changes in the size of the tumor (such as “growth” or “reduced in size”).
Predicted Entities
Line_Of_Therapy
, Response_To_Treatment
, Size_Trend
Live Demo Open in Colab Copy S3 URI
How to use
document_assembler = DocumentAssembler()\
.setInputCol("text")\
.setOutputCol("document")
sentence_detector = SentenceDetectorDLModel.pretrained("sentence_detector_dl_healthcare","en","clinical/models")\
.setInputCols(["document"])\
.setOutputCol("sentence")
tokenizer = Tokenizer() \
.setInputCols(["sentence"]) \
.setOutputCol("token")
word_embeddings = WordEmbeddingsModel().pretrained("embeddings_clinical", "en", "clinical/models")\
.setInputCols(["sentence", "token"]) \
.setOutputCol("embeddings")
ner = MedicalNerModel.pretrained("ner_oncology_response_to_treatment", "en", "clinical/models") \
.setInputCols(["sentence", "token", "embeddings"]) \
.setOutputCol("ner")
ner_converter = NerConverter() \
.setInputCols(["sentence", "token", "ner"]) \
.setOutputCol("ner_chunk")
pipeline = Pipeline(stages=[document_assembler,
sentence_detector,
tokenizer,
word_embeddings,
ner,
ner_converter])
data = spark.createDataFrame([["She completed her first-line therapy, but some months later there was recurrence of the breast cancer. "]]).toDF("text")
result = pipeline.fit(data).transform(data)
val document_assembler = new DocumentAssembler()
.setInputCol("text")
.setOutputCol("document")
val sentence_detector = SentenceDetectorDLModel.pretrained("sentence_detector_dl_healthcare","en","clinical/models")
.setInputCols("document")
.setOutputCol("sentence")
val tokenizer = new Tokenizer()
.setInputCols("sentence")
.setOutputCol("token")
val word_embeddings = WordEmbeddingsModel().pretrained("embeddings_clinical", "en", "clinical/models")
.setInputCols(Array("sentence", "token"))
.setOutputCol("embeddings")
val ner = MedicalNerModel.pretrained("ner_oncology_response_to_treatment", "en", "clinical/models")
.setInputCols(Array("sentence", "token", "embeddings"))
.setOutputCol("ner")
val ner_converter = new NerConverter()
.setInputCols(Array("sentence", "token", "ner"))
.setOutputCol("ner_chunk")
val pipeline = new Pipeline().setStages(Array(document_assembler,
sentence_detector,
tokenizer,
word_embeddings,
ner,
ner_converter))
val data = Seq("She completed her first-line therapy, but some months later there was recurrence of the breast cancer. ").toDS.toDF("text")
val result = pipeline.fit(data).transform(data)
import nlu
nlu.load("en.med_ner.oncology_response_to_treatment").predict("""She completed her first-line therapy, but some months later there was recurrence of the breast cancer. """)
Results
| chunk | ner_label |
|:-----------|:----------------------|
| first-line | Line_Of_Therapy |
| recurrence | Response_To_Treatment |
Model Information
Model Name: | ner_oncology_response_to_treatment |
Compatibility: | Spark NLP for Healthcare 4.0.0+ |
License: | Licensed |
Edition: | Official |
Input Labels: | [sentence, token, embeddings] |
Output Labels: | [ner] |
Language: | en |
Size: | 34.4 MB |
Dependencies: | embeddings_clinical |
References
In-house annotated oncology case reports.
Benchmarking
label tp fp fn total precision recall f1
Response_To_Treatment 326 101 157 483 0.76 0.67 0.72
Size_Trend 43 28 70 113 0.61 0.38 0.47
Line_Of_Therapy 99 11 7 106 0.90 0.93 0.92
macro_avg 468 140 234 702 0.76 0.66 0.70
micro_avg 468 140 234 702 0.76 0.67 0.71