Description
This model extracts cancer therapies (Cancer_Surgery, Radiotherapy and Cancer_Therapy) and posology information at a granular level.
Definitions of Predicted Entities:
Cancer_Surgery
: Terms that indicate surgery as a form of cancer treatment.Cancer_Therapy
: Any cancer treatment mentioned in text, excluding surgeries and radiotherapy.Cycle_Count
: The total number of cycles being administered of an oncological therapy (e.g. “5 cycles”).Cycle_Day
: References to the day of the cycle of oncological therapy (e.g. “day 5”).Cycle_Number
: The number of the cycle of an oncological therapy that is being applied (e.g. “third cycle”).Dosage
: The quantity prescribed by the physician for an active ingredient.Duration
: Words indicating the duration of a treatment (e.g. “for 2 weeks”).Frequency
: Words indicating the frequency of treatment administration (e.g. “daily” or “bid”).Radiotherapy
: Terms that indicate the use of Radiotherapy.Radiation_Dose
: Dose used in radiotherapy.Route
: Words indicating the type of administration route (such as “PO” or “transdermal”).
Predicted Entities
Cancer_Surgery
, Cancer_Therapy
, Cycle_Count
, Cycle_Day
, Cycle_Number
, Dosage
, Duration
, Frequency
, Radiotherapy
, Radiation_Dose
, Route
Live Demo Open in Colab Copy S3 URI
How to use
document_assembler = DocumentAssembler()\
.setInputCol("text")\
.setOutputCol("document")
sentence_detector = SentenceDetectorDLModel.pretrained("sentence_detector_dl_healthcare","en","clinical/models")\
.setInputCols(["document"])\
.setOutputCol("sentence")
tokenizer = Tokenizer() \
.setInputCols(["sentence"]) \
.setOutputCol("token")
word_embeddings = WordEmbeddingsModel().pretrained("embeddings_clinical", "en", "clinical/models")\
.setInputCols(["sentence", "token"]) \
.setOutputCol("embeddings")
ner = MedicalNerModel.pretrained("ner_oncology_posology", "en", "clinical/models") \
.setInputCols(["sentence", "token", "embeddings"]) \
.setOutputCol("ner")
ner_converter = NerConverter() \
.setInputCols(["sentence", "token", "ner"]) \
.setOutputCol("ner_chunk")
pipeline = Pipeline(stages=[document_assembler,
sentence_detector,
tokenizer,
word_embeddings,
ner,
ner_converter])
data = spark.createDataFrame([["The patient underwent a regimen consisting of adriamycin (60 mg/m2) and cyclophosphamide (600 mg/m2) over six courses. She is currently receiving his second cycle of chemotherapy and is in good overall condition."]]).toDF("text")
result = pipeline.fit(data).transform(data)
val document_assembler = new DocumentAssembler()
.setInputCol("text")
.setOutputCol("document")
val sentence_detector = SentenceDetectorDLModel.pretrained("sentence_detector_dl_healthcare","en","clinical/models")
.setInputCols("document")
.setOutputCol("sentence")
val tokenizer = new Tokenizer()
.setInputCols("sentence")
.setOutputCol("token")
val word_embeddings = WordEmbeddingsModel().pretrained("embeddings_clinical", "en", "clinical/models")
.setInputCols(Array("sentence", "token"))
.setOutputCol("embeddings")
val ner = MedicalNerModel.pretrained("ner_oncology_posology", "en", "clinical/models")
.setInputCols(Array("sentence", "token", "embeddings"))
.setOutputCol("ner")
val ner_converter = new NerConverter()
.setInputCols(Array("sentence", "token", "ner"))
.setOutputCol("ner_chunk")
val pipeline = new Pipeline().setStages(Array(document_assembler,
sentence_detector,
tokenizer,
word_embeddings,
ner,
ner_converter))
val data = Seq("The patient underwent a regimen consisting of adriamycin (60 mg/m2) and cyclophosphamide (600 mg/m2) over six courses. She is currently receiving his second cycle of chemotherapy and is in good overall condition.").toDS.toDF("text")
val result = pipeline.fit(data).transform(data)
import nlu
nlu.load("en.med_ner.oncology_posology").predict("""The patient underwent a regimen consisting of adriamycin (60 mg/m2) and cyclophosphamide (600 mg/m2) over six courses. She is currently receiving his second cycle of chemotherapy and is in good overall condition.""")
Results
| chunk | ner_label |
|:-----------------|:---------------|
| adriamycin | Cancer_Therapy |
| 60 mg/m2 | Dosage |
| cyclophosphamide | Cancer_Therapy |
| 600 mg/m2 | Dosage |
| six courses | Cycle_Count |
| second cycle | Cycle_Number |
| chemotherapy | Cancer_Therapy |
Model Information
Model Name: | ner_oncology_posology |
Compatibility: | Spark NLP for Healthcare 4.0.0+ |
License: | Licensed |
Edition: | Official |
Input Labels: | [sentence, token, embeddings] |
Output Labels: | [ner] |
Language: | en |
Size: | 34.3 MB |
Dependencies: | embeddings_clinical |
References
In-house annotated oncology case reports.
Benchmarking
label tp fp fn total precision recall f1
Cycle_Number 52 4 45 97 0.93 0.54 0.68
Cycle_Count 200 63 30 230 0.76 0.87 0.81
Radiotherapy 255 16 55 310 0.94 0.82 0.88
Cancer_Surgery 592 66 227 819 0.90 0.72 0.80
Cycle_Day 175 22 73 248 0.89 0.71 0.79
Frequency 337 44 90 427 0.88 0.79 0.83
Route 53 1 60 113 0.98 0.47 0.63
Cancer_Therapy 1448 81 250 1698 0.95 0.85 0.90
Duration 525 154 236 761 0.77 0.69 0.73
Dosage 858 79 202 1060 0.92 0.81 0.86
Radiation_Dose 86 4 40 126 0.96 0.68 0.80
macro_avg 4581 534 1308 5889 0.90 0.72 0.79
micro_avg 4581 534 1308 5889 0.90 0.78 0.83