Pipeline to Detect Drugs and Proteins

Description

This pretrained pipeline is built on the top of ner_drugprot_clinical model.

Copy S3 URI

How to use

pipeline = PretrainedPipeline("ner_drugprot_clinical_pipeline", "en", "clinical/models")

pipeline.annotate("Anabolic effects of clenbuterol on skeletal muscle are mediated by beta 2-adrenoceptor activation.")
val pipeline = new PretrainedPipeline("ner_drugprot_clinical_pipeline", "en", "clinical/models")

pipeline.annotate("Anabolic effects of clenbuterol on skeletal muscle are mediated by beta 2-adrenoceptor activation.")
import nlu
nlu.load("en.med_ner.clinical_drugprot.pipeline").predict("""Anabolic effects of clenbuterol on skeletal muscle are mediated by beta 2-adrenoceptor activation.""")

Results

+-------------------------------+---------+
|chunk                          |ner_label|
+-------------------------------+---------+
|clenbuterol                    |CHEMICAL |
|beta 2-adrenoceptor            |GENE     |
+-------------------------------+---------+

Model Information

Model Name: ner_drugprot_clinical_pipeline
Type: pipeline
Compatibility: Healthcare NLP 3.4.1+
License: Licensed
Edition: Official
Language: en
Size: 1.7 GB

Included Models

  • DocumentAssembler
  • SentenceDetectorDLModel
  • TokenizerModel
  • WordEmbeddingsModel
  • MedicalNerModel
  • NerConverter