Description
This model maps sentences & documents to a 768 dimensional dense vector space by using average pooling on top of BioBert model. It’s also fine-tuned on RxNorm dataset to help generalization over medication-related datasets.
Predicted Entities
How to use
sentence_embeddings = BertSentenceEmbeddings.pretrained("sbiobert_jsl_rxnorm_cased", "en", "clinical/models")\
.setInputCols(["sentence"])\
.setOutputCol("sbioert_embeddings")
val sentence_embeddings = BertSentenceEmbeddings.pretrained("sbiobert_jsl_rxnorm_cased", "en","clinical/models")
.setInputCols("sentence")
.setOutputCol("sbioert_embeddings")
import nlu
nlu.load("en.embed_sentence.biobert.rxnorm").predict("""Put your text here.""")
Results
Gives a 768-dimensional vector representation of the sentence.
Model Information
Model Name: | sbiobert_jsl_rxnorm_cased |
Compatibility: | Healthcare NLP 3.3.4+ |
License: | Licensed |
Edition: | Official |
Language: | en |
Size: | 402.0 MB |