ICD10 to ICD9 Code Mapping

Description

This pretrained pipeline maps ICD10 codes to ICD9 codes without using any text data. You’ll just feed a comma or white space-delimited ICD10 codes and it will return the corresponding ICD9 codes as a list.

Predicted Entities

Open in Colab Copy S3 URI

How to use

from sparknlp.pretrained import PretrainedPipeline

pipeline = PretrainedPipeline("icd10_icd9_mapping", "en", "clinical/models")
pipeline.annotate('E669 R630 J988')
import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline

val pipeline = new PretrainedPipeline("icd10_icd9_mapping", "en", "clinical/models")
val result = pipeline.annotate('E669 R630 J988')
import nlu
nlu.load("en.icd10_icd9.mapping").predict("""E669 R630 J988""")

Results

{'document': ['E669 R630 J988'],
'icd10': ['E669', 'R630', 'J988'],
'icd9': ['27800', '7830', '5198']}


Note:

| ICD10 | Details |
| ---------- | ----------------------------:|
| E669 | Obesity |
| R630 | Anorexia |
| J988 | Other specified respiratory disorders |

| ICD9 | Details |
| ---------- | ---------------------------:|
| 27800 | Obesity |
| 7830 | Anorexia |
| 5198 | Other diseases of respiratory system |

Model Information

Model Name: icd10_icd9_mapping
Type: pipeline
Compatibility: Healthcare NLP 3.3.4+
License: Licensed
Edition: Official
Language: en
Size: 545.2 KB

Included Models

  • DocumentAssembler
  • TokenizerModel
  • LemmatizerModel