Sentence Embeddings - sbert mini (tuned)

Description

This model is trained to generate contextual sentence embeddings of input sentences.

Copy S3 URI

How to use

sbiobert_embeddings = BertSentenceEmbeddings\
.pretrained("sbert_jsl_mini_uncased","en","clinical/models")\
.setInputCols(["sentence"])\
.setOutputCol("sbert_embeddings")
val sbiobert_embeddings = BertSentenceEmbeddings
.pretrained("sbert_jsl_mini_uncased","en","clinical/models")
.setInputCols(Array("sentence"))
.setOutputCol("sbert_embeddings")
import nlu
nlu.load("en.embed_sentence.bert.jsl_mini_uncased").predict("""Put your text here.""")

Results

Gives a 768 dimensional vector representation of the sentence.

Model Information

Model Name: sbert_jsl_mini_uncased
Compatibility: Healthcare NLP 3.0.3+
License: Licensed
Edition: Official
Language: en
Case sensitive: false

Data Source

Tuned on MedNLI dataset

Benchmarking

MedNLI    Score
Acc       0.663
STS(cos)  0.701