Description
This model is trained to generate contextual sentence embeddings of input sentences.
How to use
sbiobert_embeddings = BertSentenceEmbeddings\
.pretrained("sbert_jsl_mini_umls_uncased","en","clinical/models")\
.setInputCols(["sentence"])\
.setOutputCol("sbert_embeddings")
val sbiobert_embeddings = BertSentenceEmbeddings
.pretrained("sbert_jsl_mini_umls_uncased","en","clinical/models")
.setInputCols(Array("sentence"))
.setOutputCol("sbert_embeddings")
import nlu
nlu.load("en.embed_sentence.bert.jsl_mini_umlsuncased").predict("""Put your text here.""")
Results
Gives a 768 dimensional vector representation of the sentence.
Model Information
Model Name: | sbert_jsl_mini_umls_uncased |
Compatibility: | Healthcare NLP 3.0.3+ |
License: | Licensed |
Edition: | Official |
Language: | en |
Case sensitive: | false |
Data Source
Tuned on MedNLI and UMLS dataset
Benchmarking
MedNLI Score
Acc 0.677
STS(cos) 0.681