Description
Detect clinical entities in German text using pretrained NER model
Predicted Entities
TREATMENT, PERSON, BODY_PART, TIME_INFORMATION, MEDICAL_CONDITION
Live Demo Open in Colab Copy S3 URI
How to use
document_assembler = DocumentAssembler()\
.setInputCol("text")\
.setOutputCol("document")
sentence_detector = SentenceDetectorDLModel.pretrained("sentence_detector_dl_healthcare", "en", "clinical/models") \
.setInputCols(["document"]) \
.setOutputCol("sentence")
tokenizer = Tokenizer()\
.setInputCols(["sentence"])\
.setOutputCol("token")
embeddings_clinical = WordEmbeddingsModel.pretrained("w2v_cc_300d", "de", "clinical/models")\
.setInputCols(["sentence", "token"])\
.setOutputCol("embeddings")
clinical_ner = MedicalNerModel.pretrained("ner_healthcare_slim", "de", "clinical/models")\
.setInputCols(["sentence", "token", "embeddings"])\
.setOutputCol("ner")
ner_converter = NerConverter() \
.setInputCols(["sentence", "token", "ner"]) \
.setOutputCol("entities")
nlpPipeline = Pipeline(stages=[document_assembler, sentence_detector, tokenizer, embeddings_clinical, clinical_ner, ner_converter])
model = nlpPipeline.fit(spark.createDataFrame([[""]]).toDF("text"))
results = model.transform(spark.createDataFrame([["EXAMPLE_TEXT"]]).toDF("text"))
val document_assembler = new DocumentAssembler()
.setInputCol("text")
.setOutputCol("document")
val sentence_detector = SentenceDetectorDLModel.pretrained("sentence_detector_dl_healthcare", "en", "clinical/models")
.setInputCols("document")
.setOutputCol("sentence")
val tokenizer = new Tokenizer()
.setInputCols("sentence")
.setOutputCol("token")
val embeddings_clinical = WordEmbeddingsModel.pretrained("w2v_cc_300d", "de", "clinical/models")
.setInputCols(Array("sentence", "token"))
.setOutputCol("embeddings")
val ner = MedicalNerModel.pretrained("ner_healthcare_slim", "de", "clinical/models")
.setInputCols(Array("sentence", "token", "embeddings"))
.setOutputCol("ner")
val ner_converter = new NerConverter()
.setInputCols(Array("sentence", "token", "ner"))
.setOutputCol("entities")
val pipeline = new Pipeline().setStages(Array(document_assembler, sentence_detector, tokenizer, embeddings_clinical, ner, ner_converter))
val result = pipeline.fit(Seq.empty[String]).transform(data)
import nlu
nlu.load("de.med_ner").predict("""Put your text here.""")
Model Information
| Model Name: | ner_healthcare_slim |
| Compatibility: | Healthcare NLP 3.0.0+ |
| License: | Licensed |
| Edition: | Official |
| Input Labels: | [sentence, token, embeddings] |
| Output Labels: | [ner] |
| Language: | de |