Detect financial entities

Description

Extract key entities in financial contracts using pretrained NER model.

Predicted Entities

ORG, PER, MISC, LOC

Live Demo Open in Colab Download

How to use


...
embeddings_clinical = WordEmbeddingsModel.pretrained("embeddings_clinical", "en", "clinical/models")  .setInputCols(["sentence", "token"])  .setOutputCol("embeddings")
clinical_ner = MedicalNerModel.pretrained("ner_financial_contract", "en", "clinical/models")   .setInputCols(["sentence", "token", "embeddings"])   .setOutputCol("ner")
...
nlpPipeline = Pipeline(stages=[document_assembler, sentence_detector, tokenizer, embeddings_clinical, clinical_ner, ner_converter])
model = nlpPipeline.fit(spark.createDataFrame([[""]]).toDF("text"))
results = model.transform(spark.createDataFrame([["EXAMPLE_TEXT"]]).toDF("text"))

...
val embeddings_clinical = WordEmbeddingsModel.pretrained("embeddings_clinical", "en", "clinical/models")
  .setInputCols(Array("sentence", "token"))
  .setOutputCol("embeddings")
val ner = MedicalNerModel.pretrained("ner_financial_contract", "en", "clinical/models")
  .setInputCols(Array("sentence", "token", "embeddings"))
  .setOutputCol("ner")
...
val pipeline = new Pipeline().setStages(Array(document_assembler, sentence_detector, tokenizer, embeddings_clinical, ner, ner_converter))
val result = pipeline.fit(Seq.empty[""].toDS.toDF("text")).transform(data)

Model Information

Model Name: ner_financial_contract
Compatibility: Spark NLP for Healthcare 3.0.0+
License: Licensed
Edition: Official
Input Labels: [sentence, token, embeddings]
Output Labels: [ner]
Language: en