Description
Assign assertion status to clinical entities extracted by Radiology NER based on their context in the text.
Predicted Entities
Confirmed
, Suspected
, Negative
.
Live Demo Open in Colab Copy S3 URI
How to use
Extract radiology entities using the radiology NER model in the pipeline and assign assertion status for them with assertion_dl_radiology
pretrained model. Note: Example for demo purpose taken from: https://www.mtsamples.com/site/pages/sample.asp?Type=95-Radiology&Sample=1391-Chest%20PA%20&%20Lateral
documentAssembler = DocumentAssembler()\
.setInputCol("text")\
.setOutputCol("document")
sentenceDetector = SentenceDetector() \
.setInputCols(["document"]) \
.setOutputCol("sentence")
tokenizer = Tokenizer() \
.setInputCols(["sentence"]) \
.setOutputCol("token")
word_embeddings = WordEmbeddingsModel.pretrained("embeddings_clinical", "en", "clinical/models")\
.setInputCols(["sentence", "token"])\
.setOutputCol("embeddings")
radiology_ner = MedicalNerModel.pretrained("ner_radiology", "en", "clinical/models") \
.setInputCols(["sentence", "token", "embeddings"]) \
.setOutputCol("ner")
ner_converter = NerConverter() \
.setInputCols(["sentence", "token", "ner"]) \
.setOutputCol("ner_chunk")\
.setWhiteList(["ImagingFindings"])
radiology_assertion = AssertionDLModel.pretrained("assertion_dl_radiology", "en", "clinical/models") \
.setInputCols(["sentence", "ner_chunk", "embeddings"]) \
.setOutputCol("assertion")
nlpPipeline = Pipeline(stages=[documentAssembler, sentenceDetector, tokenizer, word_embeddings, radiology_ner, ner_converter, radiology_assertion])
empty_data = spark.createDataFrame([[""]]).toDF("text")
model = LightPipeline(nlpPipeline.fit(empty_data))
text = """
INTERPRETATION: There has been interval development of a moderate left-sided pneumothorax with near complete collapse of the left upper lobe. The lower lobe appears aerated. There is stable, diffuse, bilateral interstitial thickening with no definite acute air space consolidation. The heart and pulmonary vascularity are within normal limits. Left-sided port is seen with Groshong tip at the SVC/RA junction. No evidence for acute fracture, malalignment, or dislocation."""
result = model.fullAnnotate(text)
val documentAssembler = new DocumentAssembler()
.setInputCol("text")
.setOutputCol("document")
val sentenceDetector = new SentenceDetector()
.setInputCols("document")
.setOutputCol("sentence")
val tokenizer = new Tokenizer()
.setInputCols("sentence")
.setOutputCol("token")
val word_embeddings = WordEmbeddingsModel.pretrained("embeddings_clinical", "en", "clinical/models")
.setInputCols(Array("sentence", "token"))
.setOutputCol("embeddings")
val radiology_ner = MedicalNerModel.pretrained("ner_radiology", "en", "clinical/models")
.setInputCols(Array("sentence", "token", "embeddings"))
.setOutputCol("ner")
val ner_converter = NerConverter()
.setInputCols(Array("sentence", "token", "ner"))
.setOutputCol("ner_chunk")
.setWhiteList(Array("ImagingFindings"))
val radiology_assertion = AssertionDLModel.pretrained("assertion_dl_radiology", "en", "clinical/models")
.setInputCols(Array("sentence", "ner_chunk", "embeddings"))
.setOutputCol("assertion")
val nlpPipeline = new Pipeline().setStages(Array(documentAssembler, sentenceDetector, tokenizer, word_embeddings, radiology_ner, ner_converter, radiology_assertion))
text = """
INTERPRETATION: There has been interval development of a moderate left-sided pneumothorax with near complete collapse of the left upper lobe. The lower lobe appears aerated. There is stable, diffuse, bilateral interstitial thickening with no definite acute air space consolidation. The heart and pulmonary vascularity are within normal limits. Left-sided port is seen with Groshong tip at the SVC/RA junction. No evidence for acute fracture, malalignment, or dislocation."""
val data = Seq("text").toDS.toDF("text")
val result = pipeline.fit(data).transform(data)
import nlu
nlu.load("en.assert.radiology").predict("""
INTERPRETATION: There has been interval development of a moderate left-sided pneumothorax with near complete collapse of the left upper lobe. The lower lobe appears aerated. There is stable, diffuse, bilateral interstitial thickening with no definite acute air space consolidation. The heart and pulmonary vascularity are within normal limits. Left-sided port is seen with Groshong tip at the SVC/RA junction. No evidence for acute fracture, malalignment, or dislocation.""")
Results
| | ner_chunk | assertion |
|---:|:------------------------------|:------------|
| 0 | pneumothorax | Confirmed |
| 1 | complete collapse | Confirmed |
| 2 | aerated | Confirmed |
| 3 | thickening | Confirmed |
| 4 | acute air space consolidation | Negative |
| 5 | within normal limits | Confirmed |
| 6 | acute fracture | Negative |
| 7 | malalignment | Negative |
| 8 | dislocation | Negative |
Model Information
Model Name: | assertion_dl_radiology |
Compatibility: | Healthcare NLP 2.7.4+ |
License: | Licensed |
Edition: | Official |
Input Labels: | [document, chunk, embeddings] |
Output Labels: | [assertion] |
Language: | en |
Data Source
Custom internal labeled radiology dataset.
Benchmarking
label tp fp fn prec rec f1
Suspected 629 155 159 0.8022959 0.7982234 0.80025446
Negative 417 53 36 0.88723403 0.9205298 0.9035753
Confirmed 2252 173 186 0.9286598 0.92370796 0.92617726
tp: 3298 fp: 381 fn: 381 labels: 3
Macro-average prec: 0.87272996, rec: 0.88082033, f1: 0.8767565
Micro-average prec: 0.89643925, rec: 0.89643925, f1: 0.89643925