object InternalResourceDownloader
- Alphabetic
- By Inheritance
- InternalResourceDownloader
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
def
clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
- def downloadModel[TModel <: PipelineStage](reader: DefaultParamsReadable[TModel], name: String, language: Option[String] = None, folder: String = "clinical/models"): TModel
-
def
downloadModelDirectly(s3FilePath: String, folder: String, unzip: Boolean = true, cacheFolderPath: String = ""): Unit
Downloads a model from the S3 bucket to the cache folder.
Downloads a model from the S3 bucket to the cache folder.
- s3FilePath
the name of the key in the S3 bucket or s3 URI
- folder
the folder of the model in the s3
- unzip
used to unzip the model, by default true
- cacheFolderPath
the path of the file to download the model
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
finalize(): Unit
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
- val internalResourceDownloader: ResourceDownloader.type
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
- lazy val libVersion: Version
-
def
listprivateModels(): List[String]
List all pretrained models in privaete name_lang
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
- val privateLocation: String
- def privateResourceString(annotator: Option[String] = None, lang: Option[String] = None, version: Option[String] = Some(Build.version), resourceType: ResourceType.ResourceType): String
- val privateS3ResourceDownloader: InternalS3ResourceDownloader
- def returnPrivateModels(annotator: String): List[List[String]]
-
def
returnPrivateModels(annotator: Option[String] = None, lang: Option[String] = None, version: Option[String] = Some(JSLBuild.version)): List[List[String]]
Return all pretrained models for a particular annotator model, that are compatible with a version of Spark NLP.
Return all pretrained models for a particular annotator model, that are compatible with a version of Spark NLP. If any of the optional arguments are not set, the filter is not considered.
- annotator
Name of the model class, for example "NerDLModel"
- lang
Language of the pretrained models to display, for example "en"
- version
Version of Spark NLP that the model should be compatible with, for example "3.2.3"
- def returnPrivateResourceList(annotator: Option[String] = None, lang: Option[String] = None, version: Option[String] = Some(Build.version), resourceType: ResourceType.ResourceType): List[List[String]]
- def showAvailableAnnotators(): String
-
def
showPrivateModels(annotator: String): Unit
Prints all pretrained models for a particular annotator model, that are compatible with this version of Spark NLP.
Prints all pretrained models for a particular annotator model, that are compatible with this version of Spark NLP.
- annotator
Name of the annotator class
-
def
showPrivateModels(annotator: Option[String] = None, lang: Option[String] = None, version: Option[String] = Some(JSLBuild.version)): Unit
Prints all pretrained models for a particular annotator model, that are compatible with a version of Spark NLP.
Prints all pretrained models for a particular annotator model, that are compatible with a version of Spark NLP. If any of the optional arguments are not set, the filter is not considered.
- annotator
Name of the model class, for example "NerDLModel"
- lang
Language of the pretrained models to display, for example "en"
- version
Version of Spark NLP that the model should be compatible with, for example "3.2.3"
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
def
toString(): String
- Definition Classes
- AnyRef → Any
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()