class SentenceEntityResolverApproach extends AnnotatorApproach[SentenceEntityResolverModel] with SentenceResolverParams with HasCaseSensitiveProperties with HandleExceptionParams with CheckLicense
Contains all the parameters and methods to train a SentenceEntityResolverModel. The model transforms a dataset with Input Annotation type SENTENCE_EMBEDDINGS, coming from e.g. BertSentenceEmbeddings and returns the normalized entity for a particular trained ontology / curated dataset. (e.g. ICD-10, RxNorm, SNOMED etc.)
To use pretrained models please use SentenceEntityResolverModel and see the Models Hub for available models.
Example
Training a SNOMED resolution model using BERT sentence embeddings
Define pre-processing pipeline for training data. It needs consists of columns for the normalized training data and their labels.
val documentAssembler = new DocumentAssembler() .setInputCol("normalized_text") .setOutputCol("document") val bertEmbeddings = BertSentenceEmbeddings.pretrained("sent_biobert_pubmed_base_cased") .setInputCols("sentence") .setOutputCol("bert_embeddings") val snomedTrainingPipeline = new Pipeline().setStages(Array( documentAssembler, bertEmbeddings )) val snomedTrainingModel = snomedTrainingPipeline.fit(data) val snomedData = snomedTrainingModel.transform(data).cache()
Then the Resolver can be trained with
val bertExtractor = new SentenceEntityResolverApproach() .setNeighbours(25) .setThreshold(1000) .setInputCols("bert_embeddings") .setNormalizedCol("normalized_text") .setLabelCol("label") .setOutputCol("snomed_code") .setDistanceFunction("EUCLIDIAN") .setCaseSensitive(false) val snomedModel = bertExtractor.fit(snomedData)
- See also
- Grouped
- Alphabetic
- By Inheritance
- SentenceEntityResolverApproach
- CheckLicense
- HandleExceptionParams
- HasCaseSensitiveProperties
- ParamsAndFeaturesWritable
- HasFeatures
- SentenceResolverParams
- AnnotatorApproach
- CanBeLazy
- DefaultParamsWritable
- MLWritable
- HasOutputAnnotatorType
- HasOutputAnnotationCol
- HasInputAnnotationCols
- Estimator
- PipelineStage
- Logging
- Params
- Serializable
- Serializable
- Identifiable
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Instance Constructors
Type Members
-
type
AnnotatorType = String
- Definition Classes
- HasOutputAnnotatorType
Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
$[T](param: Param[T]): T
- Attributes
- protected
- Definition Classes
- Params
-
def
$$[T](feature: StructFeature[T]): T
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
$$[K, V](feature: MapFeature[K, V]): Map[K, V]
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
$$[T](feature: SetFeature[T]): Set[T]
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
$$[T](feature: ArrayFeature[T]): Array[T]
- Attributes
- protected
- Definition Classes
- HasFeatures
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
_fit(dataset: Dataset[_], recursiveStages: Option[PipelineModel]): SentenceEntityResolverModel
- Attributes
- protected
- Definition Classes
- AnnotatorApproach
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
val
auxLabelCol: Param[String]
Optional column with one extra label per document.
Optional column with one extra label per document. This extra label will be outputted later on in an additional column (Default: "aux_label")
- val auxLabelMap: StructFeature[Map[String, String]]
-
def
beforeTraining(spark: SparkSession): Unit
- Definition Classes
- AnnotatorApproach
-
val
caseSensitive: BooleanParam
- Definition Classes
- HasCaseSensitiveProperties
-
final
def
checkSchema(schema: StructType, inputAnnotatorType: String): Boolean
- Attributes
- protected
- Definition Classes
- HasInputAnnotationCols
-
def
checkValidEnvironment(spark: Option[SparkSession], scopes: Seq[String]): Unit
- Definition Classes
- CheckLicense
-
def
checkValidScope(scope: String): Unit
- Definition Classes
- CheckLicense
-
def
checkValidScopeAndEnvironment(scope: String, spark: Option[SparkSession], checkLp: Boolean): Unit
- Definition Classes
- CheckLicense
-
def
checkValidScopesAndEnvironment(scopes: Seq[String], spark: Option[SparkSession], checkLp: Boolean): Unit
- Definition Classes
- CheckLicense
-
final
def
clear(param: Param[_]): SentenceEntityResolverApproach.this.type
- Definition Classes
- Params
-
def
clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
-
val
confidenceFunction: Param[String]
- Definition Classes
- SentenceResolverParams
-
final
def
copy(extra: ParamMap): Estimator[SentenceEntityResolverModel]
- Definition Classes
- AnnotatorApproach → Estimator → PipelineStage → Params
-
def
copyValues[T <: Params](to: T, extra: ParamMap): T
- Attributes
- protected
- Definition Classes
- Params
-
val
datasetInfo: Param[String]
Descriptive information about the dataset being used.
Descriptive information about the dataset being used.
- Definition Classes
- SentenceResolverParams
-
final
def
defaultCopy[T <: Params](extra: ParamMap): T
- Attributes
- protected
- Definition Classes
- Params
-
val
description: String
- Definition Classes
- SentenceEntityResolverApproach → AnnotatorApproach
-
val
distanceFunction: Param[String]
what distance function to use for KNN: 'EUCLIDEAN' or 'COSINE'
what distance function to use for KNN: 'EUCLIDEAN' or 'COSINE'
- Definition Classes
- SentenceResolverParams
-
val
doExceptionHandling: BooleanParam
If true, exceptions are handled.
If true, exceptions are handled. If exception causing data is passed to the model, a error annotation is emitted which has the exception message. Processing continues with the next one. This comes with a performance penalty.
- Definition Classes
- HandleExceptionParams
-
val
dropCodesList: StringArrayParam
List of codes in a pretrained model to leave out when continue training with new data.
- lazy val embeddingsColumnName: String
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
explainParam(param: Param[_]): String
- Definition Classes
- Params
-
def
explainParams(): String
- Definition Classes
- Params
-
def
extractAuxLabelMap(dataset: Dataset[_]): Map[String, String]
Extracts a Map[String,String] where key=label and value=auxLabel from a dataset.
Extracts a Map[String,String] where key=label and value=auxLabel from a dataset. If either of one columns does not exist, it will return an empty map
- dataset
from which we extract the column
- returns
a Map[String,String]
-
final
def
extractParamMap(): ParamMap
- Definition Classes
- Params
-
final
def
extractParamMap(extra: ParamMap): ParamMap
- Definition Classes
- Params
-
val
features: ArrayBuffer[Feature[_, _, _]]
- Definition Classes
- HasFeatures
-
def
finalize(): Unit
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
-
final
def
fit(dataset: Dataset[_]): SentenceEntityResolverModel
- Definition Classes
- AnnotatorApproach → Estimator
-
def
fit(dataset: Dataset[_], paramMaps: Seq[ParamMap]): Seq[SentenceEntityResolverModel]
- Definition Classes
- Estimator
- Annotations
- @Since( "2.0.0" )
-
def
fit(dataset: Dataset[_], paramMap: ParamMap): SentenceEntityResolverModel
- Definition Classes
- Estimator
- Annotations
- @Since( "2.0.0" )
-
def
fit(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): SentenceEntityResolverModel
- Definition Classes
- Estimator
- Annotations
- @Since( "2.0.0" ) @varargs()
-
def
get[T](feature: StructFeature[T]): Option[T]
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
get[K, V](feature: MapFeature[K, V]): Option[Map[K, V]]
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
get[T](feature: SetFeature[T]): Option[Set[T]]
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
get[T](feature: ArrayFeature[T]): Option[Array[T]]
- Attributes
- protected
- Definition Classes
- HasFeatures
-
final
def
get[T](param: Param[T]): Option[T]
- Definition Classes
- Params
-
def
getAuxLabelCol(): Option[String]
Optional column with one extra label per document.
Optional column with one extra label per document. This extra label will be outputted later on in an additional column
-
def
getAuxLabelMap(): Map[String, String]
Map[String,String] where key=label and value=auxLabel from a dataset.
-
def
getCaseSensitive: Boolean
- Definition Classes
- HasCaseSensitiveProperties
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
def
getConfidenceFunction: String
- Definition Classes
- SentenceResolverParams
-
def
getDatasetInfo: String
get descriptive information about the dataset being used
get descriptive information about the dataset being used
- Definition Classes
- SentenceResolverParams
-
final
def
getDefault[T](param: Param[T]): Option[T]
- Definition Classes
- Params
-
def
getDistanceFunction: String
- Definition Classes
- SentenceResolverParams
-
def
getInputCols: Array[String]
- Definition Classes
- HasInputAnnotationCols
-
def
getLabelCol: String
column name for the value we are trying to resolve
-
def
getLazyAnnotator: Boolean
- Definition Classes
- CanBeLazy
-
def
getMissAsEmpty: Boolean
- Definition Classes
- SentenceResolverParams
-
def
getNeighbours: Int
- Definition Classes
- SentenceResolverParams
-
def
getNormalizedCol: String
column name for the original, normalized description
-
final
def
getOrDefault[T](param: Param[T]): T
- Definition Classes
- Params
-
final
def
getOutputCol: String
- Definition Classes
- HasOutputAnnotationCol
-
def
getParam(paramName: String): Param[Any]
- Definition Classes
- Params
-
def
getReturnAllKEmbeddings(): Boolean
Whether to return all embeddings of all K candidates of the resolution.
Whether to return all embeddings of all K candidates of the resolution. Embeddings will be in the metadata. Increase in RAM usage to be expected
-
def
getReturnCosineDistances: Boolean
Whether to calculate and return cosine distances between a sentence and the k closest candidates.
Whether to calculate and return cosine distances between a sentence and the k closest candidates. Can improve accuracy but increases computation.
-
def
getThreshold: Double
- Definition Classes
- SentenceResolverParams
-
def
getUseAuxLabel(): Boolean
Whether to use Aux Label or not
-
final
def
hasDefault[T](param: Param[T]): Boolean
- Definition Classes
- Params
-
def
hasParam(paramName: String): Boolean
- Definition Classes
- Params
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
def
initializeLogIfNecessary(isInterpreter: Boolean, silent: Boolean): Boolean
- Attributes
- protected
- Definition Classes
- Logging
-
def
initializeLogIfNecessary(isInterpreter: Boolean): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
val
inputAnnotatorTypes: Array[String]
Input annotator types: SENTENCE_EMBEDDINGS
Input annotator types: SENTENCE_EMBEDDINGS
- Definition Classes
- SentenceEntityResolverApproach → HasInputAnnotationCols
-
final
val
inputCols: StringArrayParam
- Attributes
- protected
- Definition Classes
- HasInputAnnotationCols
-
final
def
isDefined(param: Param[_]): Boolean
- Definition Classes
- Params
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
final
def
isSet(param: Param[_]): Boolean
- Definition Classes
- Params
-
def
isTraceEnabled(): Boolean
- Attributes
- protected
- Definition Classes
- Logging
-
val
labelCol: Param[String]
column name for the value we are trying to resolve (Default: "code")
- lazy val labelColumnName: String
-
val
lazyAnnotator: BooleanParam
- Definition Classes
- CanBeLazy
-
def
log: Logger
- Attributes
- protected
- Definition Classes
- Logging
-
def
logDebug(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logDebug(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logError(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logError(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logInfo(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logInfo(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logName: String
- Attributes
- protected
- Definition Classes
- Logging
-
def
logTrace(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logTrace(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logWarning(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logWarning(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
val
missAsEmpty: BooleanParam
whether or not to return an empty annotation on unmatched chunks
whether or not to return an empty annotation on unmatched chunks
- Definition Classes
- SentenceResolverParams
-
def
msgHelper(schema: StructType): String
- Attributes
- protected
- Definition Classes
- HasInputAnnotationCols
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
val
neighbours: IntParam
number of neighbours to consider in the KNN query to calculate WMD
number of neighbours to consider in the KNN query to calculate WMD
- Definition Classes
- SentenceResolverParams
-
val
normalizedCol: Param[String]
column name for the original, normalized description
- lazy val normalizedColumnName: String
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
def
onTrained(model: SentenceEntityResolverModel, spark: SparkSession): Unit
- Definition Classes
- AnnotatorApproach
-
def
onWrite(path: String, spark: SparkSession): Unit
- Attributes
- protected
- Definition Classes
- ParamsAndFeaturesWritable
-
val
optionalInputAnnotatorTypes: Array[String]
- Definition Classes
- HasInputAnnotationCols
-
val
outputAnnotatorType: AnnotatorType
Output annotator types: ENTITY
Output annotator types: ENTITY
- Definition Classes
- SentenceEntityResolverApproach → HasOutputAnnotatorType
-
final
val
outputCol: Param[String]
- Attributes
- protected
- Definition Classes
- HasOutputAnnotationCol
-
val
overrideExistingCodes: BooleanParam
Whether to override the existing codes with new data while continue the training from a pretrained model.
Whether to override the existing codes with new data while continue the training from a pretrained model. Default value is false(keep all the codes).
-
lazy val
params: Array[Param[_]]
- Definition Classes
- Params
-
val
pretrainedModelPath: Param[String]
Path to an already trained SentenceEntityResolverModel.
Path to an already trained SentenceEntityResolverModel.
This pretrained model will be used as a starting point for training the new one. The path can be a local file path, a distributed file path (HDFS, DBFS), or a cloud storage (S3).
-
val
returnAllKEmbeddings: BooleanParam
Whether to return all embeddings of all K candidates of the resolution.
Whether to return all embeddings of all K candidates of the resolution. Embeddings will be in the metadata. Increase in RAM usage to be expected (Default: false)
-
val
returnCosineDistances: BooleanParam
Whether to calculate and return cosine distances between a sentence and the k closest candidates.
Whether to calculate and return cosine distances between a sentence and the k closest candidates. Can improve accuracy but increases computation (Default: true)
-
val
returnResolvedTextEmbeddings: BooleanParam
Whether to include embeddings for resolved text embeddings.(Default : false)
-
def
save(path: String): Unit
- Definition Classes
- MLWritable
- Annotations
- @Since( "1.6.0" ) @throws( ... )
-
def
set[T](feature: StructFeature[T], value: T): SentenceEntityResolverApproach.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
set[K, V](feature: MapFeature[K, V], value: Map[K, V]): SentenceEntityResolverApproach.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
set[T](feature: SetFeature[T], value: Set[T]): SentenceEntityResolverApproach.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
set[T](feature: ArrayFeature[T], value: Array[T]): SentenceEntityResolverApproach.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
-
final
def
set(paramPair: ParamPair[_]): SentenceEntityResolverApproach.this.type
- Attributes
- protected
- Definition Classes
- Params
-
final
def
set(param: String, value: Any): SentenceEntityResolverApproach.this.type
- Attributes
- protected
- Definition Classes
- Params
-
final
def
set[T](param: Param[T], value: T): SentenceEntityResolverApproach.this.type
- Definition Classes
- Params
-
def
setAuxLabelCol(c: String): SentenceEntityResolverApproach.this.type
Optional column with one extra label per document.
Optional column with one extra label per document. This extra label will be outputted later on in an additional column
-
def
setAuxLabelMap(m: Map[String, String]): SentenceEntityResolverApproach.this.type
Map[String,String] where key=label and value=auxLabel from a dataset.
-
def
setCaseSensitive(value: Boolean): SentenceEntityResolverApproach.this.type
- Definition Classes
- HasCaseSensitiveProperties
-
def
setConfidenceFunction(v: String): SentenceEntityResolverApproach.this.type
- Definition Classes
- SentenceResolverParams
-
def
setDatasetInfo(value: String): SentenceEntityResolverApproach.this.type
set descriptive information about the dataset being used
set descriptive information about the dataset being used
- Definition Classes
- SentenceResolverParams
-
def
setDefault[T](feature: StructFeature[T], value: () ⇒ T): SentenceEntityResolverApproach.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
setDefault[K, V](feature: MapFeature[K, V], value: () ⇒ Map[K, V]): SentenceEntityResolverApproach.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
setDefault[T](feature: SetFeature[T], value: () ⇒ Set[T]): SentenceEntityResolverApproach.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
setDefault[T](feature: ArrayFeature[T], value: () ⇒ Array[T]): SentenceEntityResolverApproach.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
-
final
def
setDefault(paramPairs: ParamPair[_]*): SentenceEntityResolverApproach.this.type
- Attributes
- protected
- Definition Classes
- Params
-
final
def
setDefault[T](param: Param[T], value: T): SentenceEntityResolverApproach.this.type
- Attributes
- protected[org.apache.spark.ml]
- Definition Classes
- Params
-
def
setDistanceFunction(value: String): SentenceEntityResolverApproach.this.type
- Definition Classes
- SentenceResolverParams
-
def
setDoExceptionHandling(value: Boolean): SentenceEntityResolverApproach.this.type
If true, exceptions are handled.
If true, exceptions are handled. If exception causing data is passed to the model, a error annotation is emitted which has the exception message. Processing continues with the next one. This comes with a performance penalty.
- Definition Classes
- HandleExceptionParams
-
def
setDropCodesList(v: Array[String]): SentenceEntityResolverApproach.this.type
Sets a list of codes that will be left out in a pretrained model when continue training with new data.
-
final
def
setInputCols(value: String*): SentenceEntityResolverApproach.this.type
- Definition Classes
- HasInputAnnotationCols
-
def
setInputCols(value: Array[String]): SentenceEntityResolverApproach.this.type
- Definition Classes
- HasInputAnnotationCols
-
def
setLabelCol(value: String): SentenceEntityResolverApproach.this.type
column name for the value we are trying to resolve
-
def
setLazyAnnotator(value: Boolean): SentenceEntityResolverApproach.this.type
- Definition Classes
- CanBeLazy
-
def
setMissAsEmpty(v: Boolean): SentenceEntityResolverApproach.this.type
- Definition Classes
- SentenceResolverParams
-
def
setNeighbours(k: Int): SentenceEntityResolverApproach.this.type
- Definition Classes
- SentenceResolverParams
-
def
setNormalizedCol(value: String): SentenceEntityResolverApproach.this.type
column name for the original, normalized description
-
final
def
setOutputCol(value: String): SentenceEntityResolverApproach.this.type
- Definition Classes
- HasOutputAnnotationCol
-
def
setOverrideExistingCodes(v: Boolean): SentenceEntityResolverApproach.this.type
Whether to override the existing codes with new data while continue the training from a pretrained model.
Whether to override the existing codes with new data while continue the training from a pretrained model. Default value is false(keep all the codes).
-
def
setPretrainedModelPath(path: String): SentenceEntityResolverApproach.this.type
Set the location of an already trained SentenceEntityResolverModel, which is used as a starting point for training the new model.
-
def
setReturnAllKEmbeddings(b: Boolean): SentenceEntityResolverApproach.this.type
Whether to return all embeddings of all K candidates of the resolution.
Whether to return all embeddings of all K candidates of the resolution. Embeddings will be in the metadata. Increase in RAM usage to be expected
-
def
setReturnCosineDistances(value: Boolean): SentenceEntityResolverApproach.this.type
Whether to calculate and return cosine distances between a sentence and the k closest candidates.
Whether to calculate and return cosine distances between a sentence and the k closest candidates. Can improve accuracy but increases computation.
-
def
setReturnResolvedTextEmbeddings(value: Boolean): SentenceEntityResolverApproach.this.type
Whether to include embeddings for resolved text embeddings.(Default : false)
-
def
setThreshold(dist: Double): SentenceEntityResolverApproach.this.type
- Definition Classes
- SentenceResolverParams
-
def
setUseAuxLabel(b: Boolean): SentenceEntityResolverApproach.this.type
Whether to use Aux Label or not
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
val
threshold: DoubleParam
threshold value for the aggregated distance
threshold value for the aggregated distance
- Definition Classes
- SentenceResolverParams
-
def
toString(): String
- Definition Classes
- Identifiable → AnyRef → Any
-
def
train(dataset: Dataset[_], recursivePipeline: Option[PipelineModel]): SentenceEntityResolverModel
Returns the SentenceEntityResolverModel Transformer, that can be used to transform input datasets
Returns the SentenceEntityResolverModel Transformer, that can be used to transform input datasets
The dataset provided to the fit method should have one sentence per row and contain the following columns: SentenceEmbeddings, ResolverLabel, ResolverNormalized
The cardinality of the dataset should not exceed 100.000 data points since searching in such a big KD-tree becomes impractical
This method is called inside the AnnotatorApproach's fit method
- dataset
a Dataset containing SentenceEmbeddings, ResolverLabel, ResolverNormalized
- returns
a trained SentenceEntityResolverModel
- Definition Classes
- SentenceEntityResolverApproach → AnnotatorApproach
-
final
def
transformSchema(schema: StructType): StructType
- Definition Classes
- AnnotatorApproach → PipelineStage
-
def
transformSchema(schema: StructType, logging: Boolean): StructType
- Attributes
- protected
- Definition Classes
- PipelineStage
- Annotations
- @DeveloperApi()
-
val
uid: String
- Definition Classes
- SentenceEntityResolverApproach → Identifiable
-
val
useAuxLabel: BooleanParam
Whether to use Aux Label or not (Default: false)
-
def
validate(schema: StructType): Boolean
- Attributes
- protected
- Definition Classes
- AnnotatorApproach
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
-
def
write: MLWriter
- Definition Classes
- ParamsAndFeaturesWritable → DefaultParamsWritable → MLWritable
Inherited from CheckLicense
Inherited from HandleExceptionParams
Inherited from HasCaseSensitiveProperties
Inherited from ParamsAndFeaturesWritable
Inherited from HasFeatures
Inherited from SentenceResolverParams
Inherited from AnnotatorApproach[SentenceEntityResolverModel]
Inherited from CanBeLazy
Inherited from DefaultParamsWritable
Inherited from MLWritable
Inherited from HasOutputAnnotatorType
Inherited from HasOutputAnnotationCol
Inherited from HasInputAnnotationCols
Inherited from Estimator[SentenceEntityResolverModel]
Inherited from PipelineStage
Inherited from Logging
Inherited from Params
Inherited from Serializable
Inherited from Serializable
Inherited from Identifiable
Inherited from AnyRef
Inherited from Any
Parameters
Annotator types
Required input and expected output annotator types