com.johnsnowlabs.nlp.annotators.qa
MedicalQuestionAnswering
Companion object MedicalQuestionAnswering
class MedicalQuestionAnswering extends MedicalTextGenerator
MedicalQuestionAnswering is a GPT based model for answering questions given a context. Unlike span based models, it generates the answers to the questions, rather than selecting phrases from the given context. The model is capable of answering various types of questions, including yes-no or full text ones.
Pretrained models can be loaded with pretrained
of the companion object:
val medQA = MedicalQuestionAnswering.pretrained() .setInputCols("question_document", "context_document") .setOutputCol("answer")
For available pretrained models please see the Models Hub.
Example
import spark.implicits._ val documentAssembler = new MultiDocumentAssembler() .setInputCols("question", "context") .setOutputCols("document_question", "document_context") val medQA = MedicalQuestionAnswering.pretrained() .setInputCols("question_document", "context_document") .setOutputCol("answer") .setQuestionType("short") val pipeline = new Pipeline() .setStages(Array( documentAssembler, medQA)) val model = pipeline.fit(Seq("", "").toDS.toDF("question", "context")) val results = model.transform( Seq( ("Should chest wall irradiation be included after mastectomy and negative node breast cancer?", """ |This study aims to evaluate local failure patterns in node negative breast cancer patients treated with |post-mastectomy radiotherapy including internal mammary chain only. Retrospective analysis of 92 internal |or central-breast node-negative tumours with mastectomy and external irradiation of the internal mammary |chain at the dose of 50 Gy, from 1994 to 1998. Local recurrence rate was 5 % (five cases). Recurrence |sites were the operative scare and chest wall. Factors associated with increased risk of local failure |were age<or = 40 years and tumour size greater than 20mm, without statistical significance. |""".stripMargin) ).toDS.toDF("question", "context")) results .selectExpr("answer.result") .show(truncate = false) +-------+ |result | +-------+ |[yes] | +-------+
- See also
https://academic.oup.com/bib/article/23/6/bbac409/6713511 for details about using medical text generation with GPT
- Grouped
- Alphabetic
- By Inheritance
- MedicalQuestionAnswering
- MedicalTextGenerator
- CheckLicense
- HasEngine
- WriteSentencePieceModel
- WriteOnnxModel
- WriteTensorflowModel
- HasBatchedAnnotate
- HasCaseSensitiveProperties
- GPTGenerationParams
- AnnotatorModel
- CanBeLazy
- RawAnnotator
- HasOutputAnnotationCol
- HasInputAnnotationCols
- HasOutputAnnotatorType
- ParamsAndFeaturesWritable
- HasFeatures
- DefaultParamsWritable
- MLWritable
- Model
- Transformer
- PipelineStage
- Logging
- Params
- Serializable
- Serializable
- Identifiable
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Instance Constructors
Type Members
Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
$[T](param: Param[T]): T
- Attributes
- protected
- Definition Classes
- Params
-
def
$$[T](feature: StructFeature[T]): T
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
$$[K, V](feature: MapFeature[K, V]): Map[K, V]
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
$$[T](feature: SetFeature[T]): Set[T]
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
$$[T](feature: ArrayFeature[T]): Array[T]
- Attributes
- protected
- Definition Classes
- HasFeatures
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
val
DOCUMENT_VARIABLE_NAME: String
- Attributes
- protected
- Definition Classes
- MedicalTextGenerator
-
def
_transform(dataset: Dataset[_], recursivePipeline: Option[PipelineModel]): DataFrame
- Attributes
- protected
- Definition Classes
- AnnotatorModel
-
val
additionalTokens: MapFeature[Int, String]
Additional tokens
Additional tokens
- Definition Classes
- MedicalTextGenerator
-
def
afterAnnotate(dataset: DataFrame): DataFrame
- Attributes
- protected
- Definition Classes
- AnnotatorModel
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
def
batchAnnotate(batchedAnnotations: Seq[Array[Annotation]]): Seq[Seq[Annotation]]
takes a document and annotations and produces new annotations of this annotator's annotation type
takes a document and annotations and produces new annotations of this annotator's annotation type
- batchedAnnotations
Annotations that correspond to inputAnnotationCols generated by previous annotators if any
- returns
any number of annotations processed for every input annotation. Not necessary one to one relationship
- Definition Classes
- MedicalQuestionAnswering → MedicalTextGenerator → HasBatchedAnnotate
-
def
batchProcess(rows: Iterator[_]): Iterator[Row]
- Definition Classes
- HasBatchedAnnotate
-
val
batchSize: IntParam
- Definition Classes
- HasBatchedAnnotate
-
def
batchedAnnotateWithoutPromptTemplate(batchedAnnotations: Seq[Array[Annotation]]): Seq[Seq[Annotation]]
- Definition Classes
- MedicalTextGenerator
-
def
beforeAnnotate(dataset: Dataset[_]): Dataset[_]
- Attributes
- protected
- Definition Classes
- AnnotatorModel
-
val
caseSensitive: BooleanParam
- Definition Classes
- HasCaseSensitiveProperties
-
final
def
checkSchema(schema: StructType, inputAnnotatorType: String): Boolean
- Attributes
- protected
- Definition Classes
- HasInputAnnotationCols
-
def
checkValidEnvironment(spark: Option[SparkSession], scopes: Seq[String]): Unit
- Definition Classes
- CheckLicense
-
def
checkValidScope(scope: String): Unit
- Definition Classes
- CheckLicense
-
def
checkValidScopeAndEnvironment(scope: String, spark: Option[SparkSession], checkLp: Boolean): Unit
- Definition Classes
- CheckLicense
-
def
checkValidScopesAndEnvironment(scopes: Seq[String], spark: Option[SparkSession], checkLp: Boolean): Unit
- Definition Classes
- CheckLicense
-
final
def
clear(param: Param[_]): MedicalQuestionAnswering.this.type
- Definition Classes
- Params
-
def
clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
-
val
configProtoBytes: IntArrayParam
ConfigProto from tensorflow, serialized into byte array.
ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()
- Definition Classes
- MedicalTextGenerator
-
def
copy(extra: ParamMap): MedicalQuestionAnswering
- Definition Classes
- RawAnnotator → Model → Transformer → PipelineStage → Params
-
def
copyValues[T <: Params](to: T, extra: ParamMap): T
- Attributes
- protected
- Definition Classes
- Params
-
val
customPrompt: Param[String]
Custom model prompt
Custom model prompt
- Definition Classes
- MedicalTextGenerator
-
final
def
defaultCopy[T <: Params](extra: ParamMap): T
- Attributes
- protected
- Definition Classes
- Params
-
val
doSample: BooleanParam
Whether or not to use sampling, use greedy decoding otherwise (Default:
false
)Whether or not to use sampling, use greedy decoding otherwise (Default:
false
)- Definition Classes
- GPTGenerationParams
-
val
engine: Param[String]
- Definition Classes
- HasEngine
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
explainParam(param: Param[_]): String
- Definition Classes
- Params
-
def
explainParams(): String
- Definition Classes
- Params
-
def
extraValidate(structType: StructType): Boolean
- Attributes
- protected
- Definition Classes
- RawAnnotator
-
def
extraValidateMsg: String
- Attributes
- protected
- Definition Classes
- RawAnnotator
-
final
def
extractParamMap(): ParamMap
- Definition Classes
- Params
-
final
def
extractParamMap(extra: ParamMap): ParamMap
- Definition Classes
- Params
-
val
features: ArrayBuffer[Feature[_, _, _]]
- Definition Classes
- HasFeatures
-
def
finalize(): Unit
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
-
def
get[T](feature: StructFeature[T]): Option[T]
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
get[K, V](feature: MapFeature[K, V]): Option[Map[K, V]]
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
get[T](feature: SetFeature[T]): Option[Set[T]]
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
get[T](feature: ArrayFeature[T]): Option[Array[T]]
- Attributes
- protected
- Definition Classes
- HasFeatures
-
final
def
get[T](param: Param[T]): Option[T]
- Definition Classes
- Params
-
def
getAdditionalTokens: Map[Int, String]
Get additional tokens
Get additional tokens
- Definition Classes
- MedicalTextGenerator
-
def
getAdditionalTokensStr: String
Get additional tokens in string format
Get additional tokens in string format
- Definition Classes
- MedicalTextGenerator
-
def
getBatchSize: Int
- Definition Classes
- HasBatchedAnnotate
-
def
getCaseSensitive: Boolean
- Definition Classes
- HasCaseSensitiveProperties
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
def
getConfigProtoBytes: Option[Array[Byte]]
- Definition Classes
- MedicalTextGenerator
-
def
getCustomPrompt: String
Custom model prompt
Custom model prompt
- Attributes
- protected
- Definition Classes
- MedicalTextGenerator
-
final
def
getDefault[T](param: Param[T]): Option[T]
- Definition Classes
- Params
-
def
getDoSample: Boolean
- Definition Classes
- GPTGenerationParams
-
def
getEngine: String
- Definition Classes
- HasEngine
-
def
getIgnoreTokenIds: Array[Int]
- Definition Classes
- GPTGenerationParams
-
def
getInputCols: Array[String]
- Definition Classes
- HasInputAnnotationCols
-
def
getLazyAnnotator: Boolean
- Definition Classes
- CanBeLazy
-
def
getMaxContextLength: Int
- Definition Classes
- GPTGenerationParams
-
def
getMaxNewTokens: Int
- Definition Classes
- GPTGenerationParams
-
def
getMaxTextLength: Int
- Definition Classes
- MedicalTextGenerator
-
def
getMlFrameworkType: String
Get ML framework type
Get ML framework type
- Definition Classes
- MedicalTextGenerator
-
def
getModelIfNotSet: MedicalEncoderDecoderModel
- Definition Classes
- MedicalTextGenerator
-
def
getModelType: String
Get model type
Get model type
- Definition Classes
- MedicalTextGenerator
-
def
getNoRepeatNgramSize: Int
- Definition Classes
- GPTGenerationParams
-
final
def
getOrDefault[T](param: Param[T]): T
- Definition Classes
- Params
-
final
def
getOutputCol: String
- Definition Classes
- HasOutputAnnotationCol
-
def
getParam(paramName: String): Param[Any]
- Definition Classes
- Params
- def getQuestionTypes: Array[String]
-
def
getRandomSeed: Option[Int]
- Definition Classes
- GPTGenerationParams
-
def
getSignatures: Option[Map[String, String]]
- Definition Classes
- MedicalTextGenerator
-
def
getStopAtEos: Boolean
Checks whether text generation stops when the end-of-sentence token is encountered.
Checks whether text generation stops when the end-of-sentence token is encountered.
- Definition Classes
- MedicalTextGenerator
-
def
getTopK: Int
- Definition Classes
- GPTGenerationParams
-
def
getUseCache: Boolean
- Definition Classes
- MedicalTextGenerator
-
final
def
hasDefault[T](param: Param[T]): Boolean
- Definition Classes
- Params
-
def
hasParam(paramName: String): Boolean
- Definition Classes
- Params
-
def
hasParent: Boolean
- Definition Classes
- Model
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
val
ignoreTokenIds: IntArrayParam
A list of token ids which are ignored in the decoder's output (Default:
Array()
)A list of token ids which are ignored in the decoder's output (Default:
Array()
)- Definition Classes
- GPTGenerationParams
-
def
initializeLogIfNecessary(isInterpreter: Boolean, silent: Boolean): Boolean
- Attributes
- protected
- Definition Classes
- Logging
-
def
initializeLogIfNecessary(isInterpreter: Boolean): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
val
inputAnnotatorTypes: Array[String]
Input annotator type : DOCUMENT, DOCUMENT
Input annotator type : DOCUMENT, DOCUMENT
- Definition Classes
- MedicalQuestionAnswering → MedicalTextGenerator → HasInputAnnotationCols
-
final
val
inputCols: StringArrayParam
- Attributes
- protected
- Definition Classes
- HasInputAnnotationCols
-
final
def
isDefined(param: Param[_]): Boolean
- Definition Classes
- Params
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
final
def
isSet(param: Param[_]): Boolean
- Definition Classes
- Params
-
def
isTraceEnabled(): Boolean
- Attributes
- protected
- Definition Classes
- Logging
-
val
lazyAnnotator: BooleanParam
- Definition Classes
- CanBeLazy
-
def
log: Logger
- Attributes
- protected
- Definition Classes
- Logging
-
def
logDebug(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logDebug(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logError(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logError(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logInfo(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logInfo(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logName: String
- Attributes
- protected
- Definition Classes
- Logging
-
def
logTrace(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logTrace(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logWarning(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logWarning(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
val
maxContextLength: IntParam
Maximum length of context text.
Maximum length of context text. (Default:
1024
)- Definition Classes
- GPTGenerationParams
-
val
maxNewTokens: IntParam
Maximum number of new tokens to be generated (Default: 30)
Maximum number of new tokens to be generated (Default: 30)
- Definition Classes
- GPTGenerationParams
-
val
maxTextLength: IntParam
Maximum length of context text.
Maximum length of context text. (Default:
1024
)- Definition Classes
- MedicalTextGenerator
-
val
merges: MapFeature[(String, String), Int]
Holding merges.txt coming from RoBERTa model
Holding merges.txt coming from RoBERTa model
- Definition Classes
- MedicalTextGenerator
-
val
mlFrameworkType: Param[String]
ML framework type
ML framework type
- Definition Classes
- MedicalTextGenerator
-
val
modelType: Param[String]
Model type
Model type
- Definition Classes
- MedicalTextGenerator
-
def
msgHelper(schema: StructType): String
- Attributes
- protected
- Definition Classes
- HasInputAnnotationCols
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
val
noRepeatNgramSize: IntParam
If set to int >
0
, all ngrams of that size can only occur once (Default:0
)If set to int >
0
, all ngrams of that size can only occur once (Default:0
)- Definition Classes
- GPTGenerationParams
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
def
onWrite(path: String, spark: SparkSession): Unit
- Definition Classes
- MedicalQuestionAnswering → MedicalTextGenerator → ParamsAndFeaturesWritable
-
val
optionalInputAnnotatorTypes: Array[String]
- Definition Classes
- HasInputAnnotationCols
-
val
outputAnnotatorType: String
Output annotator type : DOCUMENT
Output annotator type : DOCUMENT
- Definition Classes
- MedicalQuestionAnswering → MedicalTextGenerator → HasOutputAnnotatorType
-
final
val
outputCol: Param[String]
- Attributes
- protected
- Definition Classes
- HasOutputAnnotationCol
-
lazy val
params: Array[Param[_]]
- Definition Classes
- Params
-
var
parent: Estimator[MedicalQuestionAnswering]
- Definition Classes
- Model
- val questionSkipLastToken: MapFeature[String, Boolean]
-
val
questionType: Param[String]
Question type, e.g.
Question type, e.g. 'short' or 'long').
-
val
randomSeed: Option[Int]
Optional Random seed for the model.
Optional Random seed for the model. Needs to be of type
Long
.- Definition Classes
- GPTGenerationParams
-
def
save(path: String): Unit
- Definition Classes
- MLWritable
- Annotations
- @Since( "1.6.0" ) @throws( ... )
-
def
set[T](feature: StructFeature[T], value: T): MedicalQuestionAnswering.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
set[K, V](feature: MapFeature[K, V], value: Map[K, V]): MedicalQuestionAnswering.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
set[T](feature: SetFeature[T], value: Set[T]): MedicalQuestionAnswering.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
set[T](feature: ArrayFeature[T], value: Array[T]): MedicalQuestionAnswering.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
-
final
def
set(paramPair: ParamPair[_]): MedicalQuestionAnswering.this.type
- Attributes
- protected
- Definition Classes
- Params
-
final
def
set(param: String, value: Any): MedicalQuestionAnswering.this.type
- Attributes
- protected
- Definition Classes
- Params
-
final
def
set[T](param: Param[T], value: T): MedicalQuestionAnswering.this.type
- Definition Classes
- Params
-
def
setAdditionalTokens(values: HashMap[Int, String]): MedicalQuestionAnswering.this.type
Set additional tokens
Set additional tokens
- Definition Classes
- MedicalTextGenerator
-
def
setAdditionalTokens(value: Map[Int, String]): MedicalQuestionAnswering.this.type
Set additional tokens
Set additional tokens
- Definition Classes
- MedicalTextGenerator
-
def
setBatchSize(size: Int): MedicalQuestionAnswering.this.type
- Definition Classes
- HasBatchedAnnotate
-
def
setCaseSensitive(value: Boolean): MedicalQuestionAnswering.this.type
- Definition Classes
- HasCaseSensitiveProperties
-
def
setConfigProtoBytes(bytes: Array[Int]): MedicalQuestionAnswering.this.type
- Definition Classes
- MedicalTextGenerator
-
def
setCustomPrompt(value: String): MedicalQuestionAnswering.this.type
Set custom model prompt
Set custom model prompt
- Definition Classes
- MedicalTextGenerator
-
def
setDefault[T](feature: StructFeature[T], value: () ⇒ T): MedicalQuestionAnswering.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
setDefault[K, V](feature: MapFeature[K, V], value: () ⇒ Map[K, V]): MedicalQuestionAnswering.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
setDefault[T](feature: SetFeature[T], value: () ⇒ Set[T]): MedicalQuestionAnswering.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
setDefault[T](feature: ArrayFeature[T], value: () ⇒ Array[T]): MedicalQuestionAnswering.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
-
final
def
setDefault(paramPairs: ParamPair[_]*): MedicalQuestionAnswering.this.type
- Attributes
- protected
- Definition Classes
- Params
-
final
def
setDefault[T](param: Param[T], value: T): MedicalQuestionAnswering.this.type
- Attributes
- protected[org.apache.spark.ml]
- Definition Classes
- Params
-
def
setDoSample(value: Boolean): MedicalQuestionAnswering.this.type
- Definition Classes
- GPTGenerationParams
-
def
setIgnoreTokenIds(tokenIds: Array[Int]): MedicalQuestionAnswering.this.type
- Definition Classes
- GPTGenerationParams
-
final
def
setInputCols(value: String*): MedicalQuestionAnswering.this.type
- Definition Classes
- HasInputAnnotationCols
-
def
setInputCols(value: Array[String]): MedicalQuestionAnswering.this.type
- Definition Classes
- HasInputAnnotationCols
-
def
setLazyAnnotator(value: Boolean): MedicalQuestionAnswering.this.type
- Definition Classes
- CanBeLazy
-
def
setMaxContextLength(value: Int): MedicalQuestionAnswering.this.type
- Definition Classes
- GPTGenerationParams
-
def
setMaxNewTokens(value: Int): MedicalQuestionAnswering.this.type
- Definition Classes
- GPTGenerationParams
-
def
setMaxTextLength(value: Int): MedicalQuestionAnswering.this.type
- Definition Classes
- MedicalTextGenerator
-
def
setMerges(value: Map[(String, String), Int]): MedicalQuestionAnswering.this.type
- Definition Classes
- MedicalTextGenerator
-
def
setMlFrameworkType(value: String): MedicalQuestionAnswering.this.type
Set ML framework type
Set ML framework type
- Definition Classes
- MedicalTextGenerator
-
def
setModelIfNotSet(spark: SparkSession, model: MedicalEncoderDecoderModel): MedicalQuestionAnswering.this.type
- Definition Classes
- MedicalTextGenerator
-
def
setModelIfNotSet(spark: SparkSession, encoder: OnnxWrapper, decoder: OnnxWrapper, spp: SentencePieceWrapper): MedicalQuestionAnswering.this.type
- Definition Classes
- MedicalTextGenerator
-
def
setModelIfNotSet(spark: SparkSession, tfWrapper: TensorflowWrapper, spp: SentencePieceWrapper, useCache: Boolean): MedicalQuestionAnswering.this.type
- Definition Classes
- MedicalTextGenerator
-
def
setModelIfNotSet(spark: SparkSession, tfWrapper: TensorflowWrapper): MedicalQuestionAnswering.this.type
- Definition Classes
- MedicalTextGenerator
-
def
setModelType(value: String): MedicalQuestionAnswering.this.type
Set model type
Set model type
- Definition Classes
- MedicalTextGenerator
-
def
setNoRepeatNgramSize(value: Int): MedicalQuestionAnswering.this.type
- Definition Classes
- GPTGenerationParams
-
final
def
setOutputCol(value: String): MedicalQuestionAnswering.this.type
- Definition Classes
- HasOutputAnnotationCol
-
def
setParent(parent: Estimator[MedicalQuestionAnswering]): MedicalQuestionAnswering
- Definition Classes
- Model
-
def
setQuestionAnswerTerminals(value: HashMap[String, List[Int]]): MedicalQuestionAnswering.this.type
Set question terminals
-
def
setQuestionAnswerTerminals(value: Map[String, Array[Int]]): MedicalQuestionAnswering.this.type
Set question terminals
-
def
setQuestionPrompts(value: HashMap[String, String]): MedicalQuestionAnswering.this.type
Set question prompts
-
def
setQuestionPrompts(value: Map[String, String]): MedicalQuestionAnswering.this.type
Set question prompts
-
def
setQuestionSkipLastToken(value: HashMap[String, Boolean]): MedicalQuestionAnswering.this.type
Set question last tokens to skip
-
def
setQuestionSkipLastToken(value: Map[String, Boolean]): MedicalQuestionAnswering.this.type
Set question last tokens to skip
- def setQuestionType(value: String): MedicalQuestionAnswering.this.type
-
def
setRandomSeed(value: Int): MedicalQuestionAnswering.this.type
- Definition Classes
- GPTGenerationParams
-
def
setSignatures(value: Map[String, String]): MedicalQuestionAnswering.this.type
- Definition Classes
- MedicalTextGenerator
-
def
setStopAtEos(value: Boolean): MedicalQuestionAnswering.this.type
Determines whether text generation stops when the end-of-sentence token is encountered.
Determines whether text generation stops when the end-of-sentence token is encountered.
- Definition Classes
- MedicalTextGenerator
-
def
setTopK(value: Int): MedicalQuestionAnswering.this.type
- Definition Classes
- GPTGenerationParams
-
def
setUseCache(value: Boolean): MedicalQuestionAnswering.this.type
- Definition Classes
- MedicalTextGenerator
-
def
setVocabulary(value: Map[String, Int]): MedicalQuestionAnswering.this.type
- Definition Classes
- MedicalTextGenerator
-
val
signatures: MapFeature[String, String]
It contains TF model signatures for the laded saved model
It contains TF model signatures for the laded saved model
- Definition Classes
- MedicalTextGenerator
-
val
stopAtEos: BooleanParam
Stop text generation when the end-of-sentence token is encountered.
Stop text generation when the end-of-sentence token is encountered.
- Definition Classes
- MedicalTextGenerator
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
def
toString(): String
- Definition Classes
- Identifiable → AnyRef → Any
-
val
topK: IntParam
The number of highest probability vocabulary tokens to consider
The number of highest probability vocabulary tokens to consider
- Definition Classes
- GPTGenerationParams
-
final
def
transform(dataset: Dataset[_]): DataFrame
- Definition Classes
- AnnotatorModel → Transformer
-
def
transform(dataset: Dataset[_], paramMap: ParamMap): DataFrame
- Definition Classes
- Transformer
- Annotations
- @Since( "2.0.0" )
-
def
transform(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): DataFrame
- Definition Classes
- Transformer
- Annotations
- @Since( "2.0.0" ) @varargs()
-
final
def
transformSchema(schema: StructType): StructType
- Definition Classes
- RawAnnotator → PipelineStage
-
def
transformSchema(schema: StructType, logging: Boolean): StructType
- Attributes
- protected
- Definition Classes
- PipelineStage
- Annotations
- @DeveloperApi()
-
val
uid: String
- Definition Classes
- MedicalQuestionAnswering → MedicalTextGenerator → Identifiable
-
val
useCache: BooleanParam
Cache internal state of the model to improve performance
Cache internal state of the model to improve performance
- Definition Classes
- MedicalTextGenerator
-
def
validate(schema: StructType): Boolean
- Attributes
- protected
- Definition Classes
- RawAnnotator
-
val
vocabulary: MapFeature[String, Int]
Vocabulary used to encode the words to ids with bpeTokenizer.encode
Vocabulary used to encode the words to ids with bpeTokenizer.encode
- Definition Classes
- MedicalTextGenerator
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
-
def
wrapColumnMetadata(col: Column): Column
- Attributes
- protected
- Definition Classes
- RawAnnotator
-
def
write: MLWriter
- Definition Classes
- ParamsAndFeaturesWritable → DefaultParamsWritable → MLWritable
-
def
writeOnnxModel(path: String, spark: SparkSession, onnxWrapper: OnnxWrapper, suffix: String, fileName: String): Unit
- Definition Classes
- WriteOnnxModel
-
def
writeOnnxModels(path: String, spark: SparkSession, onnxWrappersWithNames: Seq[(OnnxWrapper, String)], suffix: String): Unit
- Definition Classes
- WriteOnnxModel
-
def
writeSentencePieceModel(path: String, spark: SparkSession, spp: SentencePieceWrapper, suffix: String, filename: String): Unit
- Definition Classes
- WriteSentencePieceModel
-
def
writeTensorflowHub(path: String, tfPath: String, spark: SparkSession, suffix: String): Unit
- Definition Classes
- WriteTensorflowModel
-
def
writeTensorflowModel(path: String, spark: SparkSession, tensorflow: TensorflowWrapper, suffix: String, filename: String, configProtoBytes: Option[Array[Byte]]): Unit
- Definition Classes
- WriteTensorflowModel
-
def
writeTensorflowModelV2(path: String, spark: SparkSession, tensorflow: TensorflowWrapper, suffix: String, filename: String, configProtoBytes: Option[Array[Byte]], savedSignatures: Option[Map[String, String]]): Unit
- Definition Classes
- WriteTensorflowModel
Inherited from MedicalTextGenerator
Inherited from CheckLicense
Inherited from HasEngine
Inherited from WriteSentencePieceModel
Inherited from WriteOnnxModel
Inherited from WriteTensorflowModel
Inherited from HasBatchedAnnotate[MedicalQuestionAnswering]
Inherited from HasCaseSensitiveProperties
Inherited from GPTGenerationParams
Inherited from AnnotatorModel[MedicalQuestionAnswering]
Inherited from CanBeLazy
Inherited from RawAnnotator[MedicalQuestionAnswering]
Inherited from HasOutputAnnotationCol
Inherited from HasInputAnnotationCols
Inherited from HasOutputAnnotatorType
Inherited from ParamsAndFeaturesWritable
Inherited from HasFeatures
Inherited from DefaultParamsWritable
Inherited from MLWritable
Inherited from Model[MedicalQuestionAnswering]
Inherited from Transformer
Inherited from PipelineStage
Inherited from Logging
Inherited from Params
Inherited from Serializable
Inherited from Serializable
Inherited from Identifiable
Inherited from AnyRef
Inherited from Any
Parameters
A list of (hyper-)parameter keys this annotator can take. Users can set and get the parameter values through setters and getters, respectively.