com.johnsnowlabs.nlp.annotators.disambiguation
NerDisambiguatorModel
Companion object NerDisambiguatorModel
class NerDisambiguatorModel extends AnnotatorModel[NerDisambiguatorModel] with AnnotationLogic with PoolingLogicBase with KvKnowledgeExtractor with DisambiguatorModelParams with SwitchableEmbeddingsExtractor with RocksDbReader with HasSimpleAnnotate[NerDisambiguatorModel] with CheckLicense
Instantiated / pretrained model of the NerDisambiguator. Links words of interest, such as names of persons, locations and companies, from an input text document to a corresponding unique entity in a target Knowledge Base (KB). Words of interest are called Named Entities (NEs), mentions, or surface forms.
- See also
NerDisambiguator for how to use the model
- Grouped
- Alphabetic
- By Inheritance
- NerDisambiguatorModel
- CheckLicense
- HasSimpleAnnotate
- RocksDbReader
- SwitchableEmbeddingsExtractor
- DisambiguatorModelParams
- KvKnowledgeExtractor
- PoolingLogicBase
- PoolingLogic
- AnnotationLogic
- PredictionLogic
- EmbeddingsExtractor
- Mappings
- AnnotatorModel
- CanBeLazy
- RawAnnotator
- HasOutputAnnotationCol
- HasInputAnnotationCols
- HasOutputAnnotatorType
- ParamsAndFeaturesWritable
- HasFeatures
- DefaultParamsWritable
- MLWritable
- Model
- Transformer
- PipelineStage
- Logging
- Params
- Serializable
- Serializable
- Identifiable
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Instance Constructors
Type Members
-
type
AnnotationContent = Seq[Row]
- Attributes
- protected
- Definition Classes
- AnnotatorModel
-
type
AnnotatorType = String
- Definition Classes
- HasOutputAnnotatorType
-
type
OptionAsSeq[T] = Seq[T]
- Definition Classes
- Mappings
-
final
case class
Prediction(chunk: Annotation, score2link: Map[Score, String], score2id: Map[Score, DataId], score2title: Map[Score, String], score2category: Map[Score, String]) extends Product with Serializable
- Definition Classes
- PredictionLogic
Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
$[T](param: Param[T]): T
- Attributes
- protected
- Definition Classes
- Params
-
def
$$[T](feature: StructFeature[T]): T
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
$$[K, V](feature: MapFeature[K, V]): Map[K, V]
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
$$[T](feature: SetFeature[T]): Set[T]
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
$$[T](feature: ArrayFeature[T]): Array[T]
- Attributes
- protected
- Definition Classes
- HasFeatures
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
val
EmbeddingsRef: String
- Definition Classes
- EmbeddingsExtractor
-
def
_transform(dataset: Dataset[_], recursivePipeline: Option[PipelineModel]): DataFrame
- Attributes
- protected
- Definition Classes
- AnnotatorModel
-
def
afterAnnotate(dataset: DataFrame): DataFrame
- Attributes
- protected
- Definition Classes
- AnnotatorModel
-
def
annotate(annotations: Seq[Annotation]): Seq[Annotation]
- Definition Classes
- AnnotationLogic
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
def
beforeAnnotate(dataset: Dataset[_]): Dataset[_]
- Attributes
- protected
- Definition Classes
- AnnotatorModel
-
final
def
checkSchema(schema: StructType, inputAnnotatorType: String): Boolean
- Attributes
- protected
- Definition Classes
- HasInputAnnotationCols
-
def
checkValidEnvironment(spark: Option[SparkSession], scopes: Seq[String]): Unit
- Definition Classes
- CheckLicense
-
def
checkValidScope(scope: String): Unit
- Definition Classes
- CheckLicense
-
def
checkValidScopeAndEnvironment(scope: String, spark: Option[SparkSession], checkLp: Boolean): Unit
- Definition Classes
- CheckLicense
-
def
checkValidScopesAndEnvironment(scopes: Seq[String], spark: Option[SparkSession], checkLp: Boolean): Unit
- Definition Classes
- CheckLicense
-
def
chunk2idDb(): RocksDBConnection
- Definition Classes
- RocksDbReader
-
lazy val
chunk2idF: (String) ⇒ Option[List[Int]]
- Definition Classes
- NerDisambiguatorModel → Mappings
-
final
def
clear(param: Param[_]): NerDisambiguatorModel.this.type
- Definition Classes
- Params
-
def
clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
-
def
copy(extra: ParamMap): NerDisambiguatorModel
- Definition Classes
- RawAnnotator → Model → Transformer → PipelineStage → Params
-
def
copyValues[T <: Params](to: T, extra: ParamMap): T
- Attributes
- protected
- Definition Classes
- Params
-
final
def
defaultCopy[T <: Params](extra: ParamMap): T
- Attributes
- protected
- Definition Classes
- Params
-
def
dfAnnotate: UserDefinedFunction
- Definition Classes
- HasSimpleAnnotate
-
def
embeddingType: String
- Definition Classes
- NerDisambiguatorModel → SwitchableEmbeddingsExtractor
-
val
embeddingTypeParam: Param[String]
Can be 'bow' for word embeddings or 'sentence' for sentences (Default: sentence)
Can be 'bow' for word embeddings or 'sentence' for sentences (Default: sentence)
- Definition Classes
- DisambiguatorModelParams
-
def
enableApproximateMatching: Boolean
- Definition Classes
- NerDisambiguatorModel → PredictionLogic
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
explainParam(param: Param[_]): String
- Definition Classes
- Params
-
def
explainParams(): String
- Definition Classes
- Params
-
def
extraValidate(structType: StructType): Boolean
- Attributes
- protected
- Definition Classes
- RawAnnotator
-
def
extraValidateMsg: String
- Attributes
- protected
- Definition Classes
- RawAnnotator
-
def
extractKnowledgeFromKv(id2record: (DataId) ⇒ Option[Record], chunk2id: (Chunk) ⇒ Option[List[DataId]]): Knowledge
- Definition Classes
- KvKnowledgeExtractor
-
final
def
extractParamMap(): ParamMap
- Definition Classes
- Params
-
final
def
extractParamMap(extra: ParamMap): ParamMap
- Definition Classes
- Params
-
val
features: ArrayBuffer[Feature[_, _, _]]
- Definition Classes
- HasFeatures
-
def
finalize(): Unit
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
-
def
findChunkId(chunk: String): Option[List[DataId]]
- Definition Classes
- RocksDbReader
-
def
get[T](feature: StructFeature[T]): Option[T]
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
get[K, V](feature: MapFeature[K, V]): Option[Map[K, V]]
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
get[T](feature: SetFeature[T]): Option[Set[T]]
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
get[T](feature: ArrayFeature[T]): Option[Array[T]]
- Attributes
- protected
- Definition Classes
- HasFeatures
-
final
def
get[T](param: Param[T]): Option[T]
- Definition Classes
- Params
-
def
getChunk2idDb(): RocksDBConnection
- Definition Classes
- RocksDbReader
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
final
def
getDefault[T](param: Param[T]): Option[T]
- Definition Classes
- Params
-
def
getEmbeddingType: String
Can be 'bow' for word embeddings or 'sentence' for sentences (Default: sentence)
Can be 'bow' for word embeddings or 'sentence' for sentences (Default: sentence)
- Definition Classes
- DisambiguatorModelParams
-
def
getId2Connection(): RocksDBConnection
- Definition Classes
- RocksDbReader
-
def
getInputCols: Array[String]
- Definition Classes
- HasInputAnnotationCols
-
def
getLazyAnnotator: Boolean
- Definition Classes
- CanBeLazy
-
def
getLevenshteinDistanceThresholdParam: Double
Levenshtein distance threshold to narrow results from prefix search (Default: 0.1)
Levenshtein distance threshold to narrow results from prefix search (Default: 0.1)
- Definition Classes
- DisambiguatorModelParams
-
def
getNarrowWithApproximateMatching: Boolean
Whether to narrow prefix search results with levenstein distance based matching (Default: true)
Whether to narrow prefix search results with levenstein distance based matching (Default: true)
- Definition Classes
- DisambiguatorModelParams
-
def
getNearMatchingGapParam: Int
Puts a limit on a string length (by trimming the candidate chunks) during levenshtein-distance based narrowing, len(candidate) - len(entity chunk) > nearMatchingGap (Default: 4).
Puts a limit on a string length (by trimming the candidate chunks) during levenshtein-distance based narrowing, len(candidate) - len(entity chunk) > nearMatchingGap (Default: 4).
- Definition Classes
- DisambiguatorModelParams
-
def
getNumFirstChars: Int
How many characters should be considered for initial prefix search in knowledge base
How many characters should be considered for initial prefix search in knowledge base
- Definition Classes
- DisambiguatorModelParams
-
final
def
getOrDefault[T](param: Param[T]): T
- Definition Classes
- Params
-
final
def
getOutputCol: String
- Definition Classes
- HasOutputAnnotationCol
-
def
getParam(paramName: String): Param[Any]
- Definition Classes
- Params
-
def
getPredictionLimit: Int
Limit on amount of predictions N for topN predictions (Default: 100)
Limit on amount of predictions N for topN predictions (Default: 100)
- Definition Classes
- DisambiguatorModelParams
-
def
getRecord(id: DataId): Option[Record]
- Definition Classes
- RocksDbReader
-
def
getSentenceEmbedding(annotations: Seq[Annotation]): SentenceEmbeddingWithType
- Definition Classes
- SwitchableEmbeddingsExtractor → EmbeddingsExtractor
-
def
getTokenSearch: Boolean
Whether to search by token or by chunk in knowledge base (Default: true)
Whether to search by token or by chunk in knowledge base (Default: true)
- Definition Classes
- DisambiguatorModelParams
-
final
def
hasDefault[T](param: Param[T]): Boolean
- Definition Classes
- Params
-
def
hasParam(paramName: String): Boolean
- Definition Classes
- Params
-
def
hasParent: Boolean
- Definition Classes
- Model
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
lazy val
id2categoryF: (Int) ⇒ OptionAsSeq[String]
- Definition Classes
- NerDisambiguatorModel → Mappings
-
lazy val
id2embF: (Int) ⇒ OptionAsSeq[Array[Double]]
- Definition Classes
- NerDisambiguatorModel → Mappings
-
lazy val
id2linkF: (Int) ⇒ OptionAsSeq[String]
- Definition Classes
- NerDisambiguatorModel → Mappings
-
def
id2recordDb: RocksDBConnection
- Definition Classes
- RocksDbReader
-
lazy val
id2titleF: (Int) ⇒ OptionAsSeq[String]
- Definition Classes
- NerDisambiguatorModel → Mappings
-
def
initializeLogIfNecessary(isInterpreter: Boolean, silent: Boolean): Boolean
- Attributes
- protected
- Definition Classes
- Logging
-
def
initializeLogIfNecessary(isInterpreter: Boolean): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
val
inputAnnotatorTypes: Array[String]
Input annotator types: CHUNK, SENTENCE_EMBEDDINGS
Input annotator types: CHUNK, SENTENCE_EMBEDDINGS
- Definition Classes
- NerDisambiguatorModel → HasInputAnnotationCols
-
final
val
inputCols: StringArrayParam
- Attributes
- protected
- Definition Classes
- HasInputAnnotationCols
-
final
def
isDefined(param: Param[_]): Boolean
- Definition Classes
- Params
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
final
def
isSet(param: Param[_]): Boolean
- Definition Classes
- Params
-
def
isTraceEnabled(): Boolean
- Attributes
- protected
- Definition Classes
- Logging
- lazy val knowledge: Knowledge
-
val
lazyAnnotator: BooleanParam
- Definition Classes
- CanBeLazy
-
def
levenshteinDistanceThreshold: Double
- Definition Classes
- NerDisambiguatorModel → PredictionLogic
-
val
levenshteinDistanceThresholdParam: DoubleParam
Levenshtein distance threshold to narrow results from prefix search (Default: 0.1)
Levenshtein distance threshold to narrow results from prefix search (Default: 0.1)
- Definition Classes
- DisambiguatorModelParams
-
def
limit: Int
- Definition Classes
- NerDisambiguatorModel → PredictionLogic
-
def
log: Logger
- Attributes
- protected
- Definition Classes
- Logging
-
def
logDebug(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logDebug(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logError(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logError(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logInfo(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logInfo(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logName: String
- Attributes
- protected
- Definition Classes
- Logging
-
def
logTrace(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logTrace(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logWarning(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logWarning(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
msgHelper(schema: StructType): String
- Attributes
- protected
- Definition Classes
- HasInputAnnotationCols
-
val
narrowWithApproximateMatching: BooleanParam
Whether to narrow prefix search results with levenstein distance based matching (Default: true)
Whether to narrow prefix search results with levenstein distance based matching (Default: true)
- Definition Classes
- DisambiguatorModelParams
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
nearMatchingGap: Int
- Definition Classes
- NerDisambiguatorModel → PredictionLogic
-
val
nearMatchingGapParam: IntParam
Puts a limit on a string length (by trimming the candidate chunks) during levenshtein-distance based narrowing, len(candidate) - len(entity chunk) > nearMatchingGap (Default: 4).
Puts a limit on a string length (by trimming the candidate chunks) during levenshtein-distance based narrowing, len(candidate) - len(entity chunk) > nearMatchingGap (Default: 4).
- Definition Classes
- DisambiguatorModelParams
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
val
numFirstChars: IntParam
How many characters should be considered for initial prefix search in knowledge base
How many characters should be considered for initial prefix search in knowledge base
- Definition Classes
- DisambiguatorModelParams
-
def
onWrite(path: String, spark: SparkSession): Unit
- Definition Classes
- RocksDbReader → ParamsAndFeaturesWritable
-
val
optionalInputAnnotatorTypes: Array[String]
- Definition Classes
- HasInputAnnotationCols
-
val
outputAnnotatorType: AnnotatorType
Output annotator types: DISAMBIGUATION
Output annotator types: DISAMBIGUATION
- Definition Classes
- NerDisambiguatorModel → AnnotationLogic → HasOutputAnnotatorType
-
final
val
outputCol: Param[String]
- Attributes
- protected
- Definition Classes
- HasOutputAnnotationCol
-
lazy val
params: Array[Param[_]]
- Definition Classes
- Params
-
var
parent: Estimator[NerDisambiguatorModel]
- Definition Classes
- Model
-
def
poolEmbeddings(embeddings: Array[Array[Float]]): Array[Double]
- Definition Classes
- PoolingLogicBase → PoolingLogic
-
def
predictByChunk(annotations: Seq[Annotation], numFirstChars: Int): Seq[Prediction]
- Definition Classes
- PredictionLogic
-
val
predictionsLimit: IntParam
Limit on amount of predictions N for topN predictions (Default: 100)
Limit on amount of predictions N for topN predictions (Default: 100)
- Definition Classes
- DisambiguatorModelParams
-
def
save(path: String): Unit
- Definition Classes
- MLWritable
- Annotations
- @Since( "1.6.0" ) @throws( ... )
-
def
searchByToken: Boolean
- Definition Classes
- NerDisambiguatorModel → PredictionLogic
-
def
set[T](feature: StructFeature[T], value: T): NerDisambiguatorModel.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
set[K, V](feature: MapFeature[K, V], value: Map[K, V]): NerDisambiguatorModel.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
set[T](feature: SetFeature[T], value: Set[T]): NerDisambiguatorModel.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
set[T](feature: ArrayFeature[T], value: Array[T]): NerDisambiguatorModel.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
-
final
def
set(paramPair: ParamPair[_]): NerDisambiguatorModel.this.type
- Attributes
- protected
- Definition Classes
- Params
-
final
def
set(param: String, value: Any): NerDisambiguatorModel.this.type
- Attributes
- protected
- Definition Classes
- Params
-
final
def
set[T](param: Param[T], value: T): NerDisambiguatorModel.this.type
- Definition Classes
- Params
-
def
setDefault[T](feature: StructFeature[T], value: () ⇒ T): NerDisambiguatorModel.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
setDefault[K, V](feature: MapFeature[K, V], value: () ⇒ Map[K, V]): NerDisambiguatorModel.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
setDefault[T](feature: SetFeature[T], value: () ⇒ Set[T]): NerDisambiguatorModel.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
-
def
setDefault[T](feature: ArrayFeature[T], value: () ⇒ Array[T]): NerDisambiguatorModel.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
-
final
def
setDefault(paramPairs: ParamPair[_]*): NerDisambiguatorModel.this.type
- Attributes
- protected
- Definition Classes
- Params
-
final
def
setDefault[T](param: Param[T], value: T): NerDisambiguatorModel.this.type
- Attributes
- protected[org.apache.spark.ml]
- Definition Classes
- Params
-
def
setEmbeddingType(v: String): NerDisambiguatorModel.this.type
Can be 'bow' for word embeddings or 'sentence' for sentences (Default: sentence)
Can be 'bow' for word embeddings or 'sentence' for sentences (Default: sentence)
- Definition Classes
- DisambiguatorModelParams
-
final
def
setInputCols(value: String*): NerDisambiguatorModel.this.type
- Definition Classes
- HasInputAnnotationCols
-
def
setInputCols(value: Array[String]): NerDisambiguatorModel.this.type
- Definition Classes
- HasInputAnnotationCols
-
def
setLazyAnnotator(value: Boolean): NerDisambiguatorModel.this.type
- Definition Classes
- CanBeLazy
-
def
setLevenshteinDistanceThresholdParam(v: Double): NerDisambiguatorModel.this.type
Levenshtein distance threshold to narrow results from prefix search (Default: 0.1)
Levenshtein distance threshold to narrow results from prefix search (Default: 0.1)
- Definition Classes
- DisambiguatorModelParams
-
def
setNarrowWithApproximateMatching(v: Boolean): NerDisambiguatorModel.this.type
Whether to narrow prefix search results with levenstein distance based matching (Default: true)
Whether to narrow prefix search results with levenstein distance based matching (Default: true)
- Definition Classes
- DisambiguatorModelParams
-
def
setNearMatchingGapParam(v: Int): NerDisambiguatorModel.this.type
Puts a limit on a string length (by trimming the candidate chunks) during levenshtein-distance based narrowing, len(candidate) - len(entity chunk) > nearMatchingGap (Default: 4).
Puts a limit on a string length (by trimming the candidate chunks) during levenshtein-distance based narrowing, len(candidate) - len(entity chunk) > nearMatchingGap (Default: 4).
- Definition Classes
- DisambiguatorModelParams
-
def
setNumFirstChars(v: Int): NerDisambiguatorModel.this.type
How many characters should be considered for initial prefix search in knowledge base
How many characters should be considered for initial prefix search in knowledge base
- Definition Classes
- DisambiguatorModelParams
-
final
def
setOutputCol(value: String): NerDisambiguatorModel.this.type
- Definition Classes
- HasOutputAnnotationCol
-
def
setParent(parent: Estimator[NerDisambiguatorModel]): NerDisambiguatorModel
- Definition Classes
- Model
-
def
setPredictionLimit(v: Int): NerDisambiguatorModel.this.type
Limit on amount of predictions N for topN predictions (Default: 100)
Limit on amount of predictions N for topN predictions (Default: 100)
- Definition Classes
- DisambiguatorModelParams
-
def
setTokenSearch(v: Boolean): NerDisambiguatorModel.this.type
Whether to search by token or by chunk in knowledge base (Default: true)
Whether to search by token or by chunk in knowledge base (Default: true)
- Definition Classes
- DisambiguatorModelParams
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
def
toString(): String
- Definition Classes
- Identifiable → AnyRef → Any
-
val
tokenSearch: BooleanParam
Whether to search by token or by chunk in knowledge base (Default: true)
Whether to search by token or by chunk in knowledge base (Default: true)
- Definition Classes
- DisambiguatorModelParams
-
final
def
transform(dataset: Dataset[_]): DataFrame
- Definition Classes
- AnnotatorModel → Transformer
-
def
transform(dataset: Dataset[_], paramMap: ParamMap): DataFrame
- Definition Classes
- Transformer
- Annotations
- @Since( "2.0.0" )
-
def
transform(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): DataFrame
- Definition Classes
- Transformer
- Annotations
- @Since( "2.0.0" ) @varargs()
-
final
def
transformSchema(schema: StructType): StructType
- Definition Classes
- RawAnnotator → PipelineStage
-
def
transformSchema(schema: StructType, logging: Boolean): StructType
- Attributes
- protected
- Definition Classes
- PipelineStage
- Annotations
- @DeveloperApi()
-
val
uid: String
- Definition Classes
- NerDisambiguatorModel → Identifiable
-
def
validate(schema: StructType): Boolean
- Attributes
- protected
- Definition Classes
- RawAnnotator
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
-
def
wrapColumnMetadata(col: Column): Column
- Attributes
- protected
- Definition Classes
- RawAnnotator
-
def
write: MLWriter
- Definition Classes
- ParamsAndFeaturesWritable → DefaultParamsWritable → MLWritable