package relation_extraction
- Alphabetic
- Public
- All
Type Members
-
class
RelationExtractionDLModel extends nlp.annotators.re.RelationExtractionDLModel
Extracts and classifies instances of relations between named entities.
Extracts and classifies instances of relations between named entities. In contrast with RelationExtractionModel, RelationExtractionDLModel is based on BERT. For pretrained models please see the Models Hub for available models.
Example
Relation Extraction between body parts
This is a continuation of the RENerChunksFilter example. See that class on how to extract the relation chunks. Define the extraction model
val re_ner_chunk_filter = new RENerChunksFilter() .setInputCols("ner_chunks", "dependencies") .setOutputCol("re_ner_chunks") .setMaxSyntacticDistance(4) .setRelationPairs(Array("internal_organ_or_component-direction")) val re_model = RelationExtractionDLModel.pretrained("redl_bodypart_direction_biobert", "en", "clinical/models") .setPredictionThreshold(0.5f) .setInputCols("re_ner_chunks", "sentences") .setOutputCol("relations") val trained_pipeline = new Pipeline().setStages(Array( documenter, sentencer, tokenizer, words_embedder, pos_tagger, clinical_ner_tagger, ner_chunker, dependency_parser, re_ner_chunk_filter, re_model )) val data = Seq("MRI demonstrated infarction in the upper brain stem , left cerebellum and right basil ganglia").toDF("text") val result = trained_pipeline.fit(data).transform(data)
Show results
result.selectExpr("explode(relations) as relations") .select( "relations.metadata.chunk1", "relations.metadata.entity1", "relations.metadata.chunk2", "relations.metadata.entity2", "relations.result" ) .where("result != 0") .show(truncate=false) +------+---------+-------------+---------------------------+------+ |chunk1|entity1 |chunk2 |entity2 |result| +------+---------+-------------+---------------------------+------+ |upper |Direction|brain stem |Internal_organ_or_component|1 | |left |Direction|cerebellum |Internal_organ_or_component|1 | |right |Direction|basil ganglia|Internal_organ_or_component|1 | +------+---------+-------------+---------------------------+------+
- See also
RelationExtractionModel for ML based extraction
RENerChunksFilter on how to create inputs
-
class
ZeroShotRelationExtractionModel extends nlp.annotators.re.ZeroShotRelationExtractionModel
ZeroShotRelationExtractionModel implements zero shot binary relations extraction by utilizing BERT transformer models trained on the NLI (Natural Language Inference) task.
ZeroShotRelationExtractionModel implements zero shot binary relations extraction by utilizing BERT transformer models trained on the NLI (Natural Language Inference) task. The model inputs consists of documents/sentences and paired NER chunks, usually obtained by RENerChunksFilter. The definitions of relations which are extracted is given by a dictionary structures, specifying a set of statements regarding the relationship of named entities. These statements are automatically appended to each document in the dataset and the NLI model is used to determine whether a particular relationship between entities.
Pretrained models can be loaded with
pretrained
of the companion object:val zeroShotRE = ZeroShotRelationExtractionModel.pretrained() .setInputCols("token", "document") .setOutputCol("label")
For available pretrained models please see the Models Hub.
Example
val documentAssembler = new DocumentAssembler() .setInputCol("text") .setOutputCol("document") val tokenizer = new Tokenizer() .setInputCols(Array("document")) .setOutputCol("tokens") val sentencer = new SentenceDetector() .setInputCols(Array("document")) .setOutputCol("sentences") val embeddings = WordEmbeddingsModel .pretrained("embeddings_clinical", "en", "clinical/models") .setInputCols(Array("sentences", "tokens")) .setOutputCol("embeddings") val posTagger = PerceptronModel .pretrained("pos_clinical", "en", "clinical/models") .setInputCols(Array("sentences", "tokens")) .setOutputCol("posTags") val nerTagger = MedicalNerModel .pretrained("ner_clinical", "en", "clinical/models") .setInputCols(Array("sentences", "tokens", "embeddings")) .setOutputCol("nerTags") val nerConverter = new NerConverter() .setInputCols(Array("sentences", "tokens", "nerTags")) .setOutputCol("nerChunks") val dependencyParser = DependencyParserModel .pretrained("dependency_conllu", "en") .setInputCols(Array("document", "posTags", "tokens")) .setOutputCol("dependencies") val reNerFilter = new RENerChunksFilter() .setRelationPairs(Array("problem-test","problem-treatment")) .setMaxSyntacticDistance(4) .setDocLevelRelations(false) .setInputCols(Array("nerChunks", "dependencies")) .setOutputCol("RENerChunks") val re = ZeroShotRelationExtractionModel .load("/tmp/spark_sbert_zero_shot") .setRelationalCategories( Map( "CURE" -> Array("{TREATMENT} cures {PROBLEM}."), "IMPROVE" -> Array("{TREATMENT} improves {PROBLEM}.", "{TREATMENT} cures {PROBLEM}."), "REVEAL" -> Array("{TEST} reveals {PROBLEM}.") )) .setPredictionThreshold(0.9f) .setMultiLabel(false) .setInputCols(Array("sentences", "RENerChunks")) .setOutputCol("relations) val pipeline = new Pipeline() .setStages(Array( documentAssembler, sentencer, tokenizer, embeddings, posTagger, nerTagger, nerConverter, dependencyParser, reNerFilter, re)) val model = pipeline.fit(Seq("").toDS.toDF("text")) val results = model.transform( Seq("Paracetamol can alleviate headache or sickness. An MRI test can be used to find cancer.").toDS.toDF("text")) results .selectExpr("EXPLODE(relations) as relation") .selectExpr("relation.result", "relation.metadata.confidence") .show(truncate = false) +-------+----------+ |result |confidence| +-------+----------+ |REVEAL |0.9760039 | |IMPROVE|0.98819494| |IMPROVE|0.9929625 | +-------+----------+
- See also
http://jmlr.org/papers/v21/20-074.html for details about using NLI models for zero shot categorization
RENerChunksFilter on how to generate paired named entity chunks for relation extraction
Value Members
- object RelationExtractionDLModel extends ReadablePretrainedRelationExtractionDLModel with ReadRelationExtractionDLModelTensorflowModel with Serializable
-
object
ZeroShotRelationExtractionModel extends ReadablePretrainedZeroShotRelationExtractionModel with ReadZeroShotRelationExtractionModel with Serializable
This is the companion object of MedicalBertForSequenceClassification.
This is the companion object of MedicalBertForSequenceClassification. Please refer to that class for the documentation.