Sentence Entity Resolver for Logical Observation Identifiers Names and Codes (LOINC) codes

Description

This model maps extracted medical entities to Logical Observation Identifiers Names and Codes (LOINC) codes using sbiobert_base_cased_mli Sentence Bert Embeddings. It also provides the official resolution of the codes within the brackets.

Predicted Entities

loinc_code

Copy S3 URI

How to use


document_assembler = DocumentAssembler()\
	.setInputCol("text")\
	.setOutputCol("document")

sentence_detector = SentenceDetectorDLModel.pretrained("sentence_detector_dl_healthcare", "en", "clinical/models") \
	.setInputCols(["document"]) \
	.setOutputCol("sentence")

tokenizer = Tokenizer()\
	.setInputCols(["sentence"])\
	.setOutputCol("token")

word_embeddings = WordEmbeddingsModel.pretrained("embeddings_clinical", "en", "clinical/models")\
	.setInputCols(["sentence", "token"])\
	.setOutputCol("embeddings")

ner_model = MedicalNerModel.pretrained("ner_jsl", "en", "clinical/models") \
	.setInputCols(["sentence", "token", "embeddings"]) \
	.setOutputCol("ner")

ner_converter = NerConverterInternal() \
 	  .setInputCols(["sentence", "token", "ner"]) \
	  .setOutputCol("ner_chunk")\
	  .setWhiteList(["Test"])

chunk2doc = Chunk2Doc()\
  	.setInputCols("ner_chunk")\
  	.setOutputCol("ner_chunk_doc")

sbert_embedder = BertSentenceEmbeddings.pretrained("sbiobert_base_cased_mli","en","clinical/models")\
	  .setInputCols(["ner_chunk_doc"])\
	  .setOutputCol("sbert_embeddings")\
	  .setCaseSensitive(False)

resolver = SentenceEntityResolverModel.pretrained("sbiobertresolve_loinc","en", "clinical/models") \
	  .setInputCols(["sbert_embeddings"]) \
	  .setOutputCol("resolution")\
	  .setDistanceFunction("EUCLIDEAN")


nlpPipeline = Pipeline(stages=[document_assembler,
                               sentence_detector,
                               tokenizer,
                               word_embeddings,
                               ner_model,
                               ner_converter,
                               chunk2doc,
                               sbert_embedder,
                               resolver])

data = spark.createDataFrame([["""A 65-year-old woman presents to the office with generalized fatigue for the last 4 months.
  She used to walk 1 mile each evening but now gets tired after 1-2 blocks. She has a history of Crohn disease and hypertension
  for which she receives appropriate medications. She is married and lives with her husband. She eats a balanced diet that
  includes chicken, fish, pork, fruits, and vegetables. She rarely drinks alcohol and denies tobacco use. A physical examination
  is unremarkable. Laboratory studies show the following: Hemoglobin: 9.8g/dL, Hematocrit: 32%, Mean Corpuscular Volume: 110 μm3"""]]).toDF("text")

result = nlpPipeline.fit(data).transform(data)


document_assembler = nlp.DocumentAssembler()\
	.setInputCol("text")\
	.setOutputCol("document")

sentence_detector = nlp.SentenceDetectorDLModel.pretrained("sentence_detector_dl_healthcare", "en", "clinical/models") \
	.setInputCols(["document"]) \
	.setOutputCol("sentence")

tokenizer = nlp.Tokenizer()\
	.setInputCols(["sentence"])\
	.setOutputCol("token")

word_embeddings = nlp.WordEmbeddingsModel.pretrained("embeddings_clinical", "en", "clinical/models")\
	.setInputCols(["sentence", "token"])\
	.setOutputCol("embeddings")

ner_model = medical.NerModel.pretrained("ner_jsl", "en", "clinical/models") \
	.setInputCols(["sentence", "token", "embeddings"]) \
	.setOutputCol("ner")

ner_converter = medical.NerConverterInternal() \
 	  .setInputCols(["sentence", "token", "ner"]) \
	  .setOutputCol("ner_chunk")\
	  .setWhiteList(["Test"])

chunk2doc = medical.Chunk2Doc()\
  	.setInputCols("ner_chunk")\
  	.setOutputCol("ner_chunk_doc")

sbert_embedder = nlp.BertSentenceEmbeddings.pretrained("sbiobert_base_cased_mli","en","clinical/models")\
	  .setInputCols(["ner_chunk_doc"])\
	  .setOutputCol("sbert_embeddings")\
	  .setCaseSensitive(False)

resolver = medical.SentenceEntityResolverModel.pretrained("sbiobertresolve_loinc","en", "clinical/models") \
	  .setInputCols(["sbert_embeddings"]) \
	  .setOutputCol("resolution")\
	  .setDistanceFunction("EUCLIDEAN")


nlpPipeline = nlp.Pipeline(stages=[document_assembler,
                               sentence_detector,
                               tokenizer,
                               word_embeddings,
                               ner_model,
                               ner_converter,
                               chunk2doc,
                               sbert_embedder,
                               resolver])

data = spark.createDataFrame([["""A 65-year-old woman presents to the office with generalized fatigue for the last 4 months.
  She used to walk 1 mile each evening but now gets tired after 1-2 blocks. She has a history of Crohn disease and hypertension
  for which she receives appropriate medications. She is married and lives with her husband. She eats a balanced diet that
  includes chicken, fish, pork, fruits, and vegetables. She rarely drinks alcohol and denies tobacco use. A physical examination
  is unremarkable. Laboratory studies show the following: Hemoglobin: 9.8g/dL, Hematocrit: 32%, Mean Corpuscular Volume: 110 μm3"""]]).toDF("text")

result = nlpPipeline.fit(data).transform(data)


val document_assembler = new DocumentAssembler()
  .setInputCol("text")
  .setOutputCol("document")

val sentence_detector = SentenceDetectorDLModel.pretrained("sentence_detector_dl_healthcare","en","clinical/models")
  .setInputCols(Array("document"))
  .setOutputCol("sentence")

val tokenizer = new Tokenizer()
  .setInputCols(Array("sentence"))
  .setOutputCol("token")

val word_embeddings = WordEmbeddingsModel.pretrained("embeddings_clinical","en","clinical/models")
  .setInputCols(Array("sentence","token"))
  .setOutputCol("embeddings")

val ner_model = MedicalNerModel.pretrained("ner_jsl","en","clinical/models")
  .setInputCols(Array("sentence","token","embeddings"))
  .setOutputCol("ner")

val ner_converter = new NerConverterInternal()
  .setInputCols(Array("sentence","token","ner"))
  .setOutputCol("ner_chunk")
  .setWhiteList(Array("Test"))

val chunk2doc = new Chunk2Doc()
  .setInputCols("ner_chunk")
  .setOutputCol("ner_chunk_doc")

val sbert_embedder = BertSentenceEmbeddings.pretrained("sbiobert_base_cased_mli","en","clinical/models")
  .setInputCols(Array("ner_chunk_doc"))
  .setOutputCol("sbert_embeddings")
  .setCaseSensitive(false)

val resolver = SentenceEntityResolverModel.pretrained("sbiobertresolve_loinc","en","clinical/models")
  .setInputCols(Array("sbert_embeddings"))
  .setOutputCol("resolution")
  .setDistanceFunction("EUCLIDEAN")

val nlpPipeline = new Pipeline().setStages(Array(
    document_assembler,
    sentence_detector,
    tokenizer,
    word_embeddings,
    ner_model,
    ner_converter,
    chunk2doc,
    sbert_embedder,
    resolver))

val data = Seq([["""A 65-year-old woman presents to the office with generalized fatigue for the last 4 months.
  She used to walk 1 mile each evening but now gets tired after 1-2 blocks. She has a history of Crohn disease and hypertension
  for which she receives appropriate medications. She is married and lives with her husband. She eats a balanced diet that
  includes chicken, fish, pork, fruits, and vegetables. She rarely drinks alcohol and denies tobacco use. A physical examination
  is unremarkable. Laboratory studies show the following: Hemoglobin: 9.8g/dL, Hematocrit: 32%, Mean Corpuscular Volume: 110 μm3"""]]).toDF("text")

val result = nlpPipeline.fit(data).transform(data)

Results


++-----------------------+-----+---+---------+----------+------------------------------------------------------------+------------------------------------------------------------+------------------------------------------------------------+------------------------------------------------------------+
|                  chunk|begin|end|ner_label|loinc_code|                                                 description|                                                 resolutions|                                                   all_codes|                                                  aux_labels|
+-----------------------+-----+---+---------+----------+------------------------------------------------------------+------------------------------------------------------------+------------------------------------------------------------+------------------------------------------------------------+
|   physical examination|  450|469|     Test|  100223-7|                       Physical findings [Physical findings]|Physical findings [Physical findings]:::Physical findings...|100223-7:::29545-1:::55286-9:::11435-5:::67668-4:::11384-...|ACTIVE:::ACTIVE:::ACTIVE:::ACTIVE:::ACTIVE:::ACTIVE:::ACT...|
|     Laboratory studies|  490|507|     Test|   26436-6|                     Laboratory studies [Laboratory studies]|Laboratory studies [Laboratory studies]:::Laboratory [Lab...|26436-6:::52482-7:::102009-8:::34075-2:::89756-1:::89763-...|ACTIVE:::DISCOURAGED:::ACTIVE:::ACTIVE:::ACTIVE:::ACTIVE:...|
|             Hemoglobin|  529|538|     Test|  103750-6|                                     Hemoglobin [Hemoglobin]|Hemoglobin [Hemoglobin]:::Hemoglobin S [Hemoglobin S]:::H...|103750-6:::34663-5:::110938-8:::10346-5:::53224-2:::40546...|ACTIVE:::ACTIVE:::TRIAL:::ACTIVE:::ACTIVE:::ACTIVE:::ACTI...|
|             Hematocrit|  550|559|     Test|   16931-8|               Hematocrit/Hemoglobin [Hematocrit/Hemoglobin]|Hematocrit/Hemoglobin [Hematocrit/Hemoglobin]:::Hematocri...|16931-8:::39227-4:::103930-4:::4593-0:::103750-6:::110938...|ACTIVE:::ACTIVE:::ACTIVE:::ACTIVE:::ACTIVE:::TRIAL:::ACTI...|
|Mean Corpuscular Volume|  567|589|     Test|   30386-7|Erythrocyte mean corpuscular diameter [Erythrocyte mean c...|Erythrocyte mean corpuscular diameter [Erythrocyte mean c...|30386-7:::48706-6:::103930-4:::51641-9:::33878-0:::11666-...|ACTIVE:::ACTIVE:::ACTIVE:::ACTIVE:::ACTIVE:::ACTIVE:::TRI...|
+-----------------------+-----+---+---------+----------+------------------------------------------------------------+------------------------------------------------------------+------------------------------------------------------------+------------------------------------------------------------+

Model Information

Model Name: sbiobertresolve_loinc
Compatibility: Healthcare NLP 6.2.2+
License: Licensed
Edition: Official
Input Labels: [sentence_embeddings]
Output Labels: [loinc_code]
Language: en
Size: 687.3 MB
Case sensitive: false

References

This model is trained with LOINC v2.81 dataset