Procedures Named Entity Recognition Spanish (Base, ONNX)

Description

This is a RoBERTa-based NER model for Spanish medical text. It identifies medical procedures in clinical sentences and labels them using B-PROCEDURE, I-PROCEDURE, or O. The model is intended for extracting procedure names from notes, reports, and clinical records, and is provided in ONNX format for efficient inference.

Copy S3 URI

How to use

from sparknlp.base import *
from sparknlp.annotator import *
from pyspark.ml import Pipeline

documentAssembler = DocumentAssembler() \
    .setInputCol("text") \
    .setOutputCol("document")

tokenizer = Tokenizer() \
    .setInputCols("document") \
    .setOutputCol("token")

tokenClassifier = RoBertaForTokenClassification \
    .pretrained("roberta_procedure_ner_es_onnx", "es", "clinical/models") \
    .setInputCols(["document", "token"]) \
    .setOutputCol("ner")

converter = NerConverter() \
    .setInputCols(["document", "token", "ner"]) \
    .setOutputCol("ner_chunk")

pipeline = Pipeline(stages=[
    documentAssembler,
    tokenizer,
    tokenClassifier,
    converter
])

data = spark.createDataFrame([["El paciente se sometió a una resonancia magnética y una biopsia de hígado."]]).toDF("text")
result = pipeline.fit(data).transform(data)

result.selectExpr("explode(ner_chunk) as chunk").selectExpr(
    "chunk.result as text",
    "chunk.metadata['entity'] as entity"
).show(truncate=False)
from johnsnowlabs import nlp, medical

documentAssembler = nlp.DocumentAssembler() \
    .setInputCol("text") \
    .setOutputCol("document")

tokenizer = nlp.Tokenizer() \
    .setInputCols("document") \
    .setOutputCol("token")

tokenClassifier = nlp.RoBertaForTokenClassification \
    .pretrained("roberta_procedure_ner_es_onnx", "es", "clinical/models") \
    .setInputCols(["document", "token"]) \
    .setOutputCol("ner")

converter = nlp.NerConverter() \
    .setInputCols(["document", "token", "ner"]) \
    .setOutputCol("ner_chunk")

pipeline = nlp.Pipeline(stages=[
    documentAssembler,
    tokenizer,
    tokenClassifier,
    converter
])

data = spark.createDataFrame([["El paciente se sometió a una resonancia magnética y una biopsia de hígado."]]).toDF("text")
result = pipeline.fit(data).transform(data)

result.selectExpr("explode(ner_chunk) as chunk").selectExpr(
    "chunk.result as text",
    "chunk.metadata['entity'] as entity"
).show(truncate=False)
import com.johnsnowlabs.nlp.base._
import com.johnsnowlabs.nlp.annotators._
import org.apache.spark.sql.functions._
import org.apache.spark.ml.Pipeline

val documentAssembler = new DocumentAssembler()
  .setInputCol("text")
  .setOutputCol("document")

val tokenizer = new Tokenizer()
  .setInputCols(Array("document"))
  .setOutputCol("token")

val tokenClassifier = RoBertaForTokenClassification
  .pretrained("roberta_procedure_ner_es_onnx", "es", "clinical/models")
  .setInputCols(Array("document", "token"))
  .setOutputCol("ner")

val converter = new NerConverter()
  .setInputCols(Array("document", "token", "ner"))
  .setOutputCol("ner_chunk")

val pipeline = new Pipeline().setStages(Array(
  documentAssembler,
  tokenizer,
  tokenClassifier,
  converter
))

val data = Seq("El paciente se sometió a una resonancia magnética y una biopsia de hígado.").toDF("text")
val result = pipeline.fit(data).transform(data)

result.selectExpr("explode(ner_chunk) as chunk")
  .selectExpr("chunk.result as text", "chunk.metadata['entity'] as entity")
  .show(false)

Results


+--------------------+---------+
|text                |entity   |
+--------------------+---------+
|resonancia magnética|PROCEDURE|
|biopsia de          |PROCEDURE|
+--------------------+---------+

Model Information

Model Name: roberta_procedure_ner_es_onnx
Compatibility: Healthcare NLP 6.2.0+
License: Licensed
Edition: Official
Input Labels: [token, sentence]
Output Labels: [ner]
Language: es
Size: 469.7 MB
Case sensitive: true
Max sentence length: 128